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APPLICATION OF MACHINE LEARNING IN SCREENING FOR
B-THALASSEMIA USING COMPLETE BLOOD COUNT (CBC)
PARAMETER

Ta Van Thao™, Tran Hai Yen, Dang Thi Thuy Hong
Hanoi Medical University

This study is among the first in Vietnam to apply machine learning (ML) for B-thalassemia screening based
solely on complete blood count (CBC) parameters. A regionally imbalanced dataset of 515 CBC samples was
collected from students in Lai Chau province at Chemedic Laboratory (Hanoi) between October and December
2023. A validation set of 111 samples, including 55 B-thalassemia cases confirmed by high-performance liquid
chromatography (HPLC), was analyzed using an XP-100 hematology analyzer. Supervised ML models-Decision
Tree (DT), Random Forest (RF), and Logistic Regression (LR)-were developed with Python libraries (scikit-
learn, TensorFlow), incorporating Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic
Sampling (ADASYN), Principal Component Analysis (PCA), and Singular Value Decomposition (SVD) for
data balancing and feature extraction. The SMOTE-PCA/SVD combinations achieved high accuracy (0.95 for
DT and RF; 0.93 for LR), with ROC AUC 0.94-0.96 and F1-score = 0.95. Using ADASYN with PCA/SVD
improved DT accuracy to 0.97 but reduced RF to 0.85. Optimal performance occurred with a 500-sample
training set, 60:40 class ratio, and test sizes of 0.05 — 0.2. These findings demonstrate that ML, particularly
DT and RF, can serve as cost-effective, non-invasive screening tools for B-thalassemia in resource-limited

regions of Vietnam, although further validation with larger and genetically confirmed datasets is warranted.
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I. INTRODUCTION

Thalassemia is an inherited hemolytic to the Thalassemia International Federation

anemia caused by genetic mutations that
reduce or eliminate synthesis of a- or B-globin
chains, potentially leading to severe anemia,
organ damage, or early mortality.'? Classified as
a- or B-thalassemia depending on the affected
globin chain, it represents a major global public
health challenge due to its high prevalence
and associated morbidity.** B-Thalassemia
is particularly common in Southeast Asia,
including Vietnam, where the carrier rate is
estimated at approximately 7.8%.' According
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(2022), around 7% of the global population are
carriers, while the World Health Organization
(2008) reports that hemoglobinopathies affect
71% of countries, resulting in 60,000 — 70,000
births annually with severe B-thalassemia and
contributing to 3.4% of under-5 mortality."?
Managing B-thalassemia imposes a
substantial economic and healthcare burden
due to lifelong blood transfusions and iron
chelation therapy.! Early detection through
screening
methods such as CBC analysis can facilitate
timely interventions, reducing healthcare
costs and improving outcomes.® Although
confirmatory tests such as high-performance
liquid chromatography (HPLC), hemoglobin
electrophoresis, and molecular analysis remain

cost-effective  and accessible

JMR 196 E17 (11) - 2025

33



JOURNAL OF MEDICAL RESEARCH

the diagnostic gold standards, their high cost
and technical complexity limit widespread use
in low-resource settings.®

Recent advances in machine learning (ML)
have leveraged CBC datato classify thalassemia
and distinguish it from iron-deficiency anemia
using supervised algorithms with data-balancing
and dimensionality-reduction techniques such
as SMOTE, ADASYN, PCA, and SVD.”® While
Al-based decision support systems for prenatal
thalassemia screening have been explored in
Vietnam, these approaches incorporated both
hematological and biochemical variables. To
our knowledge, no prior study in Vietham has
focused exclusively on applying ML to CBC-
derived erythrocyte indices for (B-thalassemia
screening in a general population.® This study
therefore aims to evaluate the performance
of supervised ML models for B-thalassemia
detection and to assess the effects of different
data-balancing and feature-extraction methods
(SMOTE, ADASYN, PCA, and SVD) using a
small, regionally imbalanced dataset from a
high-prevalence area.'®"

Il. MATERIALS AND METHODS
1. Subjects

The study included a training dataset of
515 peripheral blood samples collected from
individuals born in 2009 in Lai Chau province,
Vietnam, selected from an initial cohort of 2,813
samples based on normal plasma iron and
ferritin levels, conducted between October 2023
and December 2023 at Chemedic Laboratory,
Hanoi. A validation dataset comprised 111

samples, with 55 confirmed [-thalassemia
cases and 56 non-affected controls, diagnosed
via high-performance liquid chromatography
(HPLC).2 The demographic profile included 274
males (53%) and 241 females (47%).

Inclusion Criteria: Samples collected in
ethylenediaminetetraacetic acid (EDTA)-coated
tubes with a minimum volume of 2 mL, free of
hemolysis, and processed within 24 hours at
4°C.

Exclusion Criteria: Samples compromised
during transportation, storage, or preservation;
samples from individuals with iron-deficiency
anemia (defined by MCV < 80fL and ferritin <
15 ng/mL).

2. Methods

This study employed
purposive sampling based on the defined

cross-sectional

inclusion and exclusion criteria. The dataset
consisted of 252 individuals diagnosed with
B-thalassemia and 263 healthy controls, with
disease status initially screened by complete
blood count (CBC) and confirmed by HPLC. The
dataset included 12 features: 9 hematological
parameters (red blood cell count [RBC],
hematocrit [HCT], hemoglobin [HGB], mean
corpuscular volume [MCV], mean corpuscular
hemoglobin  [MCH], mean  corpuscular
hemoglobin concentration [MCHC], red cell
distribution width [RDW], platelet count [PLT],
white blood cell count [WBC]), 2 demographic
variables (age and gender), and 1 binary
classification target (B-thalassemia status), as
detailed in Table 1.

Table 1. Features and Their Significance

Feature Significance Data Type
Age Age of study participant Numeric
Sex Gender of diagnosed patient Categorical
RBC Red blood cell count Numeric
34 JMR 196 E17 (11) - 2025
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Feature Significance Data Type
HCT Hematocrit (packed cell volume) Numeric
HGB Hemoglobin concentration Numeric
MCV Mean corpuscular volume Numeric
MCH Mean corpuscular hemoglobin Numeric
MCHC Mean corpuscular hemoglobin concentration Numeric
RDW Red cell distribution width Numeric
PLT Platelet count Numeric
WBC White blood cell count Numeric
Thalassemia Diagnosis of B-thalassemia (yes/no) Binary

Laboratory Procedures

Blood samples underwent the following
sequential analyses:

Complete Blood Count (CBC): Performed
using an XP-100 analyzer (Sysmex
Corporation) per the Ministry of Health’s
guidelines for Hematology-Transfusion-
Medicine-Immunology-Genetics-Molecular
Biology Procedures. Venous blood (2 mL)
was collected in EDTA-coated tubes, mixed
thoroughly, and analyzed within 24 hours at
4°C. Reference ranges were: RBC (males: 4.2
- 5.4 T/L, females: 4.0 — 4.9 T/L), HCT (males:
0.4 — 0.47 L/L, females: 0.37 — 0.42 L/L), HGB
(= 120 g/L), MCV (80 — 100fL), MCH (28 —
32pg), MCHC (320 — 360 g/L), RDW-CV (11 —
14%), PLT (150 — 450 G/L), WBC (4 — 10 G/L).
Anemia severity was classified as: mild (Hb
90 — <120 g/L), moderate (Hb 60 — <90 g/L),
severe (Hb 30 — <60 g/L), and very severe (Hb
< 30 g/L). Daily calibration with control samples
ensured a coefficient of variation (CV) < 5%.

Hemoglobin analysis:
quantification was performed using a Bio-
Rad Variant Il High-Performance Liquid
Chromatography (HPLC) system following the
Ministry of Health (Vietham) guidelines. Venous

Hemoglobin

blood samples (2mL, collected in EDTA tubes)
were analyzed within 48 hours, with duplicate
runs per specimen to ensure precision (inter-
assay coefficient of variation < 3%). HPLC
served as the reference standard for confirming
B-thalassemia, quantifying HbA, HbA,, and
HbF according to standardized protocols and
internal quality control procedures. Reference
ranges were: HbA (96 — 98%), HbA, (0.5 -
3.5%), and HbF (0.1 — 0.5%).22

Machine Learning Implementation

Algorithms and Techniques

Machine learning models were developed
using Random Forest (RF), Decision Tree
(DT), and Logistic Regression (LR) algorithms,
with  preprocessing techniques including
Synthetic Minority Oversampling Technique
(SMOTE), Adaptive Synthetic Sampling
(ADASYN), Principal Component Analysis
(PCA), and Singular Value Decomposition
(SVD)."3 Experiments were executed on
Google Colab using scikit-learn (version
1.2.2) and TensorFlow (version 2.10.0), with
hyperparameter optimization performed via
grid search (e.g., RF: 100 — 500 trees, DT: max
depth 3 - 10, LR: C=0.1 - 10).
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Figure 1. Machine learning workflow
Data  Preprocessing and  Model retaining the top 5-10 components based
Development on explained variance. The dataset was

Data were preprocessed using the Label
Encoder from scikit-learn to convert categorical
variables (e.g., gender, thalassemia status)
into numerical values (0 to N-1). Imbalanced
class distribution (252 cases vs. 263 controls)
was mitigated using SMOTE and ADASYN
to oversample the minority class, ensuring
balanced representation.”'® Missing data were
imputed using median values. Feature selection
via PCA and SVD reduced dimensionality,

partitioned into training (80%) and testing
(20%) subsets using stratified 5-fold cross-
validation to minimize bias. Model performance
was evaluated with:

Accuracy = (TP +TN) /(TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall = TP /(TP + FN)

where TP (True Positive), FP (False

Positive), TN (True Negative), and FN (False
Negative) are defined in Figure 2.

Model prediction results

B — thalassemia

No f — thalassemia

True positive

True negative

Real results
No 3 — thalassemia | 8 — thalassemia

False positive

False negative

Figure 2. TP/FP/TN/FN definitions
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Experimental Design

Initial Experiments:

Experiment 1: Classification using the
original imbalanced dataset (252 cases, 263
controls; validation set: 111 samples, 55
B-thalassemia, 56 controls).

Experiment 2: Classification with SMOTE
and ADASYN oversampling to address class
imbalance.

Experiment 3: Classification with
oversampling combined with PCA and SVD for
feature selection and dimensionality reduction.

Visual Representation: ML workflow (Figure
1), TP/FP/TN/FN definitions (Figure 2), and
experimental design overview (Chart 3) to
illustrate methodology.

Follow-up Experiments:

Sample Size Impact: Performance of the
optimal model (Random Forest with SMOTE
and PCA/SVD) assessed across training sets
of 300, 400, and 500 samples, each replicated

three times using bootstrap sampling.

Class Balance Impact: Evaluation with
a fixed sample size of 400, using stratified
sampling across class ratios of 60:40, 50:50,
and 40:60 (B-thalassemia:non-B-thalassemia).

Test Set Size Impact: Analysis of model
performance with test set proportions ranging
from 0.05 to 0.6 in 0.05 increments, using a
10% hold-out validation set for final evaluation.

Statistical Analysis

Statistical analyses were conducted using
Microsoft Excel (version 2019) and GraphPad
Prism (version 9.0). Results were reported
as counts (n) and percentages (%), with
model performance metrics including 95%
confidence intervals calculated via bootstrap
resampling (1,000 iterations). Differences in
accuracy between models were assessed
using DelLong’s test, with p-values adjusted
for multiple comparisons using the Bonferroni
correction.

Original data

)

Data standardization

']

Sampling technique

[]

Special selection technique

]

Data separation

l

Train (0.8)

Check (0.2)

Model training

Model evaluation

Classification

l

B-thalassemia

l

No B-thalassemia

Figure 3. Experimental design
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3. Research ethics

The research will respect the confidentiality
and anonymity of all subjects. All participants
provided with sufficient information about the
research subject and are informed about the
contents of the research. The research causes
no significant harm or threat to participants,
physically and emotionally. The research is
independent and impartial

I1l. RESULTS

Model Classification Performance

Machine learning (ML) models (Decision
Tree [DT], Random Forest [RF], Logistic
Regression [LR]) were evaluated on a validation
set of 111 samples (55 p-thalassemia cases, 56

controls) across three experiments, assessing
the impact of data preprocessing and parameter
optimization. Performance metrics (accuracy,
precision, recall, F1-score, AUC) are reported
with 95% confidence intervals (ClIs).

Experiment 1.
Original Dataset

Models trained on the original dataset (252
cases, 263 controls) exhibited suboptimal
performance (Table 2). LR achieved the highest
accuracy (0.77 [95% CI: 0.69 - 0.84]), followed
by RF (0.59 [95% CI: 0.51 - 0.67]) and DT (0.57
[95% CI: 0.49 - 0.65]). Confusion matrices
revealed high false negatives (e.g., DT: FN =
45; RF: FN = 44), indicating poor sensitivity for
B-thalassemia detection.

Classification Using

Table 2. Performance of Machine Learning Models on Original Imbalanced Dataset

Model Classification Precision Recall F1- Accuracy AUC (95% Cl)
score (95% CI)

o7 Non-B-thalassemia 0.84 0.20 0.33 0.57 0.58
B-thalassemia 0.54 0.96 0.69 (049-0.65)  (0.50 - 0.66)

RF Non-B-thalassemia 0.92 0.21 0.34 0.59 0.60
B-thalassemia 0.55 0.98 0.70 (0.51-0.67)  (0.52-0.68)
Non-B-thalassemia 0.69 1.00 0.82 0.77 0.77

R B-thalassemia 1.00 0.54 0.70 (0.69-0.84)  (0.69-0.84)

DT, Decision Tree; RF, Random Forest; LR, Logistic Regression. Metrics calculated on a validation set
of 111 samples (55 (B-thalassemia, 56 controls). Accuracy and AUC are overall model performance;
Precision and Recall reported for Non-3-thalassemia and B-thalassemia, respectively; F1-score =
2 * (Precision * Recall) / (Precision + Recall). 95% Cls from bootstrap analysis (1,000 iterations).
Confusion matrices: DT (TP =53, TN =11, FP =45, FN = 2), RF (TP =54, TN = 12, FP = 44, FN =

1), LR (TP =30, TN =56, FP =0, FN = 25)

Experiment 2. Oversampling with SMOTE
and ADASYN

SMOTE improved
performance, with RF achieving the highest
accuracy (0.96 [95% CI: 0.92 - 0.99]; AUC,
0.96 [95% CI: 0.93 - 0.98]; F1-score, 0.96). DT
and LR reached accuracies of 0.81 (95% CI:

oversampling

0.74 - 0.87) and 0.90 (95% CI: 0.84 - 0.95),
respectively. RF’s confusion matrix (TP = 54,
TN =55, FP =1, FN = 1) showed near-perfect
classification. ADASYN vyielded variable results:
RF and LR accuracies were 0.90 (95% CI: 0.84 -
0.95)and 0.91 (95% CI: 0.85-0.96), but DT was
poor (0.58 [95% CI: 0.50 - 0.66]). Oversampling
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results are reported in Supporting Information
(Tables S1 and S2).
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- 0.96). RF’s confusion matrix (TP = 53, TN =
53, FP = 3, FN = 2) indicated high sensitivity

Experiment 3. Oversampling with Feature
Selection

Combining SMOTE with PCA/SVD (Table
3) optimized performance, with RF and DT
achieving accuracies of 0.95 (95% CI: 0.91
- 0.98; AUC, 0.96 [95% CI: 0.93 - 0.98]; F1-
score, 0.95) and LR at 0.925 (95% CI, 0.88

Table 3. Performance of Machine Learning Models with SMOTE and PCA/SVD

(96%) and specificity (95%). ADASYN with
PCA/SVD (Table 4) produced the highest DT
accuracy (0.97 [95% CI: 0.94 - 0.99]; AUC, 0.97
[95% CI: 0.95 - 0.99]), but RF dropped to 0.85
(95% CI: 0.78 - 0.91), highlighting ADASYN'’s
inconsistency.

Model Classification  Precision Recall @ - Accuracy )¢ (95% Cl)
score (95% Cl)

oT Non-B-thalassemia 0.93 0.98 0.95 0.95 0.95 (0.91
B-thalassemia 0.98 0.93 0.95 (0.91-0.98) -0.98)
Non-B-thalassemia 0.95 0.96 0.95 0.95 0.96

RE B-thalassemia 0.96 0.94 0.95 (0.91-0.98) (0.92-0.99)

IR Non-B-thalassemia 0.85 1.00 0.92 0.93 0.91
B-thalassemia 1.00 0.82 0.90 (0.88 - 0.96) (0.86 - 0.95)

DT, Decision Tree; RF, Random Forest; LR, Logistic Regression; PCA, Principal Component Analysis;
SVD, Singular Value Decomposition. Metrics calculated on a validation set of 111 samples (55
B-thalassemia, 56 controls). Precision, Recall, and F1-score reported for Non-3-thalassemia (upper
row) and B-thalassemia (lower row) per model. 95% Cls from bootstrap analysis (1,000 iterations).
Confusion matrices: DT (TP =54, TN =55, FP=1, FN=1), RF (TP =53, TN =53, FP =3, FN = 2),
LR (TP =45 TN =56, FP=0, FN = 10)

Table 4. Performance of Machine Learning Models with ADASYN and PCA/SVD

Model Classification Precision Recall F1- Accuracy AUC (95% Cl)

score (95% ClI)

- Non-B-thalassemia 0.94 1.00 0.97 0.97 0.97
B-thalassemia 1.00 0.94 0.97 (0.94 - 0.99) (0.94 - 0.99)
Non-B-thalassemia 0.97 0.71 0.82 0.85 0.84

R B-thalassemia 0.77 0.98 0.86 (0.78-0.91) (0.77 - 0.90)

LR Non-B-thalassemia 0.85 1.00 0.92 0.92 0.91
B-thalassemia 1.00 0.82 0.90 (0.88 - 0.96) (0.86 - 0.95)

DT, Decision Tree; RF, Random Forest; LR, Logistic Regression; PCA, Principal Component Analysis;
SVD, Singular Value Decomposition. Metrics calculated on a validation set of 111 samples (55
B-thalassemia, 56 controls). Precision, Recall, and F1-score reported for Non-B-thalassemia (upper
row) and B-thalassemia (lower row) per model. 95% Cls from bootstrap analysis (1,000 iterations).
Confusion matrices: DT (TP =55, TN =54, FP=1, FN=1), RF (TP =54, TN =40, FP =2, FN = 15),
LR (TP =45 TN =56, FP=0, FN = 10)
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Parameter Optimization

Using RF with SMOTE and PCA/SVD,
training set size impacted performance (Table
5). A 500-sample set yielded the highest
accuracy (0.95 [95% CI: 0.91 - 0.98]), declining
to 0.92 (95% ClI, 0.87-0.96) at 400 samples
and 0.90 (95% CI: 0.84 - 0.94) at 300 samples.
Class balance (Table 6) showed a 60:40

ratio as optimal (0.94 [95% CI: 0.90 - 0.97]),
with 50:50 and 40:60 at 0.92 (95% CI: 0.87
- 0.96). Test set size results are reported in
Supporting Information (Table S3). The AUC
performance of the Random Forest (RF) model
with SMOTE+PCA/SVD across varying test set
sizes is shown in Chart 1.

Table 5. Performance of Random Forest with SMOTE and PCA/SVD
Across Training Set Sizes

Training Classification Precision Recall Accuracy AUC
ITl | ISI

Set Size score (95% CI) (95% Cl)
500 Non-B-thalassemia 0.95 0.96 0.95 0.95 0.96
samples B-thalassemia 0.96 094 095 (0.91-0.98) (0.92 - 0.99)
400 Non-B-thalassemia 0.94 0.89 0.91 0.92 0.92
samples B-thalassemia 0.89 094  0.91 (0.87 - 0.96) (0.87 - 0.96)
300 Non-B-thalassemia 0.81 1.00 0.89 0.90 0.88
samples B-thalassemia 1.00 0.76  0.86 (0.84 - 0.94) (0.82-0.93)

Metrics calculated using Random Forest with SMOTE, PCA, and SVD on a validation set of 111
samples (55 [B-thalassemia, 56 controls). Precision, Recall, and F1-score reported for Non-3-
thalassemia (upper row) and B-thalassemia (lower row). 95% Cls from bootstrap analysis (1,000
iterations). Confusion matrices: 500 samples (TP =53, TN = 63, FP = 3, FN = 2), 400 samples (TP =
49, TN =50, FP =5, FN = 7), 300 samples (TP =42, TN = 56, FP =0, FN = 13)

Table 6. Performance of Random Forest with SMOTE and PCA/SVD Across Class Ratios

Class Accurac AUC
Ratio Classification Precision Recall F1-score (95% CI;( (95% Cl)
£0:40 Non-B-thalassemia 0.90 0.98 0.94 0.94 0.94
B-thalassemia 0.98 0.88 0.93 (0.90 - 0.97) (0.90 - 0.97)
. Non-B-thalassemia 0.90 0.95 0.92 0.92 0.92
00:50 B-thalassemia 0.94 0.89 0.91 (0.87 - 0.96) (0.87 - 0.96)
40:60 Non-B-thalassemia 0.90 0.95 0.92 0.92 0.92
B-thalassemia 0.94 0.89 0.91 (0.87-0.96)  (0.87-0.96)

Metrics calculated using Random Forest with SMOTE, PCA, and SVD on a validation set of 111
samples (55 [B-thalassemia, 56 controls). Precision, Recall, and F1-score reported for Non-{3-
thalassemia (upper row) and B-thalassemia (lower row). 95% Cls from bootstrap analysis (1,000
iterations). Confusion matrices: 60:40 (TP = 54, TN =55, FP =1, FN = 1), 50:50 (TP = 52, TN = 53,
FP =3, FN = 3), 40:60 (TP =52, TN =53, FP=3, FN = 3)

40 JMR 196 E17 (11) - 2025



JOURNAL OF MEDICAL RESEARCH

The RF model was tested with test sizes
from 0.05 to 0.6 on a 500-sample training set.

Results are shown in Table S3 and Chart 1.

1.00 T T

0.95 |

0.90 |

AUC

0.85 |

0.80 |

0.75 L L

0.0 0.1 0.2

0.3

0.4 0.5 0.6

Test Set Size
Chart 1. AUC vs Test Set Size for the Random Forest Model (SMOTE + PCA)

The receiver operating performance of
the Random Forest (RF) model trained with
SMOTE and PCA is shown across varying test
set proportions (0.05 — 0.6). The highest AUC
values (0.95 — 0.96) were observed for smaller
test sizes (0.05 — 0.2), indicating model stability
and optimal generalization under moderate
data partitioning. AUC decreased when the test
proportion exceeded 0.3, suggesting sensitivity
to limited training data.®

IV. DISCUSSION

This study evaluated machine learning
(ML) models for 3-thalassemia screening using
complete blood count (CBC) data from 515
students in Lai Chau province, Vietham (49%
B-thalassemia, 51% controls), excluding iron-
deficiency anemia cases.® Three experiments
explored the effects of data preprocessing,
feature extraction, and parameter optimization,
demonstrating that ML can serve as a cost-
effective and non-invasive screening tool for
B-thalassemia in resource-limited settings.

Initial experiments on the originalimbalanced
dataset revealed modest accuracies (Logistic
Regression [LR]: 0.77 [95% CI: 0.69 - 0.84],
Random Forest [RF]: 0.59 [95% CI: 0.51 -
0.67], Decision Tree [DT]: 0.57 [95% CI: 0.49
- 0.65]), driven by high false negatives (e.g.,
DT: FN = 45), underscoring the challenge of
class imbalance in hematologic ML tasks.*
These findings are consistent with prior studies,
such as Rustam et al. (2022), who reported
accuracies of 0.90 — 0.91 on balanced datasets,
and Saleem et al. (2023), who achieved 0.83 —
0.88 on imbalanced data, reinforcing the need
for data-balancing techniques.?°

Oversampling with SMOTE and ADASYN,
combined with PCA/SVD, significantly improved
model performance. SMOTE with PCA/SVD
yielded optimal results (RF: 0.95 [95% CI: 0.91
- 0.98], DT: 0.95[95% CI: 0.91 - 0.98], LR: 0.93
[95% CI: 0.88 - 0.96]; AUC = 0.96; F1-score =
0.95), with RF demonstrating high sensitivity
(98%) and specificity (96%) (TP = 53, TN =

JMR 196 E17 (11) - 2025
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53, FP = 3, FN = 2)." ADASYN with PCA/SVD
excelled with DT (0.97 [95% CI: 0.94 - 0.99],
AUC 0.97), but RF performance declined to
0.85 [95% CI: 0.78 - 0.91], reflecting model-
specific responses to synthetic data generation,
as noted by Chawla et al. (2002)." These
outcomes align with DeepThal (2022) and
Christensen et al. (2025), who reported AUCs
> 0.95, despite our study’s smaller, regionally
focused cohort.™

Parameter optimization further refined
results. A 500-sample training set maximized
RF accuracy (0.95 [95% CI: 0.91 - 0.98)]),
declining to 0.90 [95% CI: 0.84 - 0.94] at 300
samples, supporting Li et al.’s (2021) emphasis
on dataset size." A 60:40 class ratio optimized
accuracy (0.94[95% CI:0.90-0.97]), suggesting
mild imbalance mirrors real-world prevalence,
consistent with Batista et al. (2004)." Test set
size analysis (Table S3) showed peak AUCs
(0.95-0.96) at0.05-0.2, declining beyond 0.3,
indicating sensitivity to training data availability.

Compared to traditional hematologic indices
such as Mentzer (MCV/RBC, sensitivity 74 —
90%) and Shine & Lal (MCV2 x MCH % 0.01),
the optimized RF model achieved markedly
higher diagnostic accuracy (sensitivity 98%,
specificity 96%), substantially reducing false
negatives-an essential advantage for early
carrier detection and public health screening.'®"”
Integrating such ML tools into Vietnam’s
existing CBC-based screening workflows could
enhance accessibility, particularly in remote or
low-resource areas where molecular testing
remains unavailable.

Nevertheless, several limitations should
be acknowledged. This study relied solely
on HPLC as the confirmatory method
without genetic validation. Although HPLC is
considered sufficient by WHO, TIF, and ARUP
guidelines, it may not detect silent or compound

mutations.™ Furthermore, the single-center
design and relatively small sample size may
limit generalizability. Future multi-center studies
incorporating genetic confirmation and larger,
demographically diverse cohorts are needed
to verify the scalability and clinical utility of ML-
based thalassemia screening in Vietham.

V. CONCLUSION

This study demonstrated that machine
learning (ML) models, particularly Random
Forest and Decision Tree algorithms enhanced
with  SMOTE and PCA/SVD preprocessing,
can accurately screen for B-thalassemia using
complete blood count (CBC) parameters
alone. The approach achieved high diagnostic
performance while maintaining affordability and
simplicity, supporting its potential integration
into routine hematology screening in resource-
limited settings.

However, as this single-center study was
based on a relatively small dataset without
genetic confirmation, further validation across
multiple centers and inclusion of molecular data
are warranted to confirm the generalizability
and clinical utility of ML-based B-thalassemia
screening in Vietham.
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