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I. INTRODUCTION

APPLICATION OF MACHINE LEARNING IN SCREENING FOR 
Β-THALASSEMIA USING COMPLETE BLOOD COUNT (CBC) 

PARAMETER
Ta Van Thao, Tran Hai Yen, Dang Thi Thuy Hong

Hanoi Medical University

This study is among the first in Vietnam to apply machine learning (ML) for β-thalassemia screening based 
solely on complete blood count (CBC) parameters. A regionally imbalanced dataset of 515 CBC samples was 
collected from students in Lai Châu province at Chemedic Laboratory (Hanoi) between October and December 
2023. A validation set of 111 samples, including 55 β-thalassemia cases confirmed by high-performance liquid 
chromatography (HPLC), was analyzed using an XP-100 hematology analyzer. Supervised ML models-Decision 
Tree (DT), Random Forest (RF), and Logistic Regression (LR)-were developed with Python libraries (scikit-
learn, TensorFlow), incorporating Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic 
Sampling (ADASYN), Principal Component Analysis (PCA), and Singular Value Decomposition (SVD) for 
data balancing and feature extraction. The SMOTE-PCA/SVD combinations achieved high accuracy (0.95 for 
DT and RF; 0.93 for LR), with ROC AUC 0.94–0.96 and F1-score ≈ 0.95. Using ADASYN with PCA/SVD 
improved DT accuracy to 0.97 but reduced RF to 0.85. Optimal performance occurred with a 500-sample 
training set, 60:40 class ratio, and test sizes of 0.05 – 0.2. These findings demonstrate that ML, particularly 
DT and RF, can serve as cost-effective, non-invasive screening tools for β-thalassemia in resource-limited 

regions of Vietnam, although further validation with larger and genetically confirmed datasets is warranted.

Keywords: β-thalassemia, machine learning, complete blood count, screening. 

Thalassemia is an inherited hemolytic 
anemia caused by genetic mutations that 
reduce or eliminate synthesis of α- or β-globin 
chains, potentially leading to severe anemia, 
organ damage, or early mortality.1,2 Classified as 
α- or β-thalassemia depending on the affected 
globin chain, it represents a major global public 
health challenge due to its high prevalence 
and associated morbidity.3,4 β-Thalassemia 
is particularly common in Southeast Asia, 
including Vietnam, where the carrier rate is 
estimated at approximately 7.8%.1 According 

to the Thalassemia International Federation 
(2022), around 7% of the global population are 
carriers, while the World Health Organization 
(2008) reports that hemoglobinopathies affect 
71% of countries, resulting in 60,000 – 70,000 
births annually with severe β-thalassemia and 
contributing to 3.4% of under-5 mortality.1,2

Managing β-thalassemia imposes a 
substantial economic and healthcare burden 
due to lifelong blood transfusions and iron 
chelation therapy.1 Early detection through 
cost-effective and accessible screening 
methods such as CBC analysis can facilitate 
timely interventions, reducing healthcare 
costs and improving outcomes.5 Although 
confirmatory tests such as high-performance 
liquid chromatography (HPLC), hemoglobin 
electrophoresis, and molecular analysis remain 
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the diagnostic gold standards, their high cost 
and technical complexity limit widespread use 
in low-resource settings.6

Recent advances in machine learning (ML) 
have leveraged CBC data to classify thalassemia 
and distinguish it from iron-deficiency anemia 
using supervised algorithms with data-balancing 
and dimensionality-reduction techniques such 
as SMOTE, ADASYN, PCA, and SVD.7,8 While 
AI-based decision support systems for prenatal 
thalassemia screening have been explored in 
Vietnam, these approaches incorporated both 
hematological and biochemical variables. To 
our knowledge, no prior study in Vietnam has 
focused exclusively on applying ML to CBC-
derived erythrocyte indices for β-thalassemia 
screening in a general population.9 This study 
therefore aims to evaluate the performance 
of supervised ML models for β-thalassemia 
detection and to assess the effects of different 
data-balancing and feature-extraction methods 
(SMOTE, ADASYN, PCA, and SVD) using a 
small, regionally imbalanced dataset from a 
high-prevalence area.10,11

II. MATERIALS AND METHODS
1. Subjects

The study included a training dataset of 
515 peripheral blood samples collected from 
individuals born in 2009 in Lai Chau province, 
Vietnam, selected from an initial cohort of 2,813 
samples based on normal plasma iron and 
ferritin levels, conducted between October 2023 
and December 2023 at Chemedic Laboratory, 
Hanoi. A validation dataset comprised 111 

samples, with 55 confirmed β-thalassemia 
cases and 56 non-affected controls, diagnosed 
via high-performance liquid chromatography 
(HPLC).2 The demographic profile included 274 
males (53%) and 241 females (47%).

Inclusion Criteria: Samples collected in 
ethylenediaminetetraacetic acid (EDTA)-coated 
tubes with a minimum volume of 2 mL, free of 
hemolysis, and processed within 24 hours at 
4°C.

Exclusion Criteria: Samples compromised 
during transportation, storage, or preservation; 
samples from individuals with iron-deficiency 
anemia (defined by MCV < 80fL and ferritin < 
15 ng/mL).

2. Methods

This cross-sectional study employed 
purposive sampling based on the defined 
inclusion and exclusion criteria. The dataset 
consisted of 252 individuals diagnosed with 
β-thalassemia and 263 healthy controls, with 
disease status initially screened by complete 
blood count (CBC) and confirmed by HPLC. The 
dataset included 12 features: 9 hematological 
parameters (red blood cell count [RBC], 
hematocrit [HCT], hemoglobin [HGB], mean 
corpuscular volume [MCV], mean corpuscular 
hemoglobin [MCH], mean corpuscular 
hemoglobin concentration [MCHC], red cell 
distribution width [RDW], platelet count [PLT], 
white blood cell count [WBC]), 2 demographic 
variables (age and gender), and 1 binary 
classification target (β-thalassemia status), as 
detailed in Table 1.

Table 1. Features and Their Significance

Feature Significance Data Type

Age Age of study participant Numeric

Sex Gender of diagnosed patient Categorical

RBC Red blood cell count Numeric
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Feature Significance Data Type

HCT Hematocrit (packed cell volume) Numeric

HGB Hemoglobin concentration Numeric

MCV Mean corpuscular volume Numeric

MCH Mean corpuscular hemoglobin Numeric

MCHC Mean corpuscular hemoglobin concentration Numeric

RDW Red cell distribution width Numeric

PLT Platelet count Numeric

WBC White blood cell count Numeric

Thalassemia Diagnosis of β-thalassemia (yes/no) Binary

Laboratory Procedures
Blood samples underwent the following 

sequential analyses:
Complete Blood Count (CBC): Performed 

using an XP-100 analyzer (Sysmex 
Corporation) per the Ministry of Health’s 
guidelines for Hematology-Transfusion-
Medicine-Immunology-Genetics-Molecular 
Biology Procedures. Venous blood (2 mL) 
was collected in EDTA-coated tubes, mixed 
thoroughly, and analyzed within 24 hours at 
4°C. Reference ranges were: RBC (males: 4.2 
– 5.4 T/L, females: 4.0 – 4.9 T/L), HCT (males: 
0.4 – 0.47 L/L, females: 0.37 – 0.42 L/L), HGB 
(≥ 120 g/L), MCV (80 – 100fL), MCH (28 – 
32pg), MCHC (320 – 360 g/L), RDW-CV (11 – 
14%), PLT (150 – 450 G/L), WBC (4 – 10 G/L). 
Anemia severity was classified as: mild (Hb 
90 – <120 g/L), moderate (Hb 60 – <90 g/L), 
severe (Hb 30 – <60 g/L), and very severe (Hb 
< 30 g/L). Daily calibration with control samples 
ensured a coefficient of variation (CV) < 5%.

Hemoglobin analysis: Hemoglobin 
quantification was performed using a Bio-
Rad Variant II High-Performance Liquid 
Chromatography (HPLC) system following the 
Ministry of Health (Vietnam) guidelines. Venous 

blood samples (2mL, collected in EDTA tubes) 
were analyzed within 48 hours, with duplicate 
runs per specimen to ensure precision (inter-
assay coefficient of variation < 3%). HPLC 
served as the reference standard for confirming 
β-thalassemia, quantifying HbA, HbA1, and 
HbF according to standardized protocols and 
internal quality control procedures. Reference 
ranges were: HbA1 (96 – 98%), HbA1 (0.5 – 
3.5%), and HbF (0.1 – 0.5%).2,12

Machine Learning Implementation
Algorithms and Techniques
Machine learning models were developed 

using Random Forest (RF), Decision Tree 
(DT), and Logistic Regression (LR) algorithms, 
with preprocessing techniques including 
Synthetic Minority Oversampling Technique 
(SMOTE), Adaptive Synthetic Sampling 
(ADASYN), Principal Component Analysis 
(PCA), and Singular Value Decomposition 
(SVD).11,13 Experiments were executed on 
Google Colab using scikit-learn (version 
1.2.2) and TensorFlow (version 2.10.0), with 
hyperparameter optimization performed via 
grid search (e.g., RF: 100 – 500 trees, DT: max 
depth 3 – 10, LR: C=0.1 – 10).
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Figure 1. Machine learning workflow
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Data were preprocessed using the Label 
Encoder from scikit-learn to convert categorical 
variables (e.g., gender, thalassemia status) 
into numerical values (0 to N-1). Imbalanced 
class distribution (252 cases vs. 263 controls) 
was mitigated using SMOTE and ADASYN 
to oversample the minority class, ensuring 
balanced representation.11,13 Missing data were 
imputed using median values. Feature selection 
via PCA and SVD reduced dimensionality, 

retaining the top 5–10 components based 
on explained variance. The dataset was 
partitioned into training (80%) and testing 
(20%) subsets using stratified 5-fold cross-
validation to minimize bias. Model performance 
was evaluated with:

Accuracy = (TP + TN) / (TP + TN + FP + FN)
Precision = TP / (TP + FP)
Recall = TP / (TP + FN)
 where TP (True Positive), FP (False 

Positive), TN (True Negative), and FN (False 
Negative) are defined in Figure 2.

Figure 2. TP/FP/TN/FN definitions
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Experimental Design
Initial Experiments: 
Experiment 1: Classification using the 

original imbalanced dataset (252 cases, 263 
controls; validation set: 111 samples, 55 
β-thalassemia, 56 controls).

Experiment 2: Classification with SMOTE 
and ADASYN oversampling to address class 
imbalance.

Experiment 3: Classification with 
oversampling combined with PCA and SVD for 
feature selection and dimensionality reduction.

Visual Representation: ML workflow (Figure 
1), TP/FP/TN/FN definitions (Figure 2), and 
experimental design overview (Chart 3) to 
illustrate methodology.

Follow-up Experiments: 
Sample Size Impact: Performance of the 

optimal model (Random Forest with SMOTE 
and PCA/SVD) assessed across training sets 
of 300, 400, and 500 samples, each replicated 

three times using bootstrap sampling.
Class Balance Impact: Evaluation with 

a fixed sample size of 400, using stratified 
sampling across class ratios of 60:40, 50:50, 
and 40:60 (β-thalassemia:non-β-thalassemia).

Test Set Size Impact: Analysis of model 
performance with test set proportions ranging 
from 0.05 to 0.6 in 0.05 increments, using a 
10% hold-out validation set for final evaluation.

Statistical Analysis
Statistical analyses were conducted using 

Microsoft Excel (version 2019) and GraphPad 
Prism (version 9.0). Results were reported 
as counts (n) and percentages (%), with 
model performance metrics including 95% 
confidence intervals calculated via bootstrap 
resampling (1,000 iterations). Differences in 
accuracy between models were assessed 
using DeLong’s test, with p-values adjusted 
for multiple comparisons using the Bonferroni 
correction.

Figure 3. Experimental design
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3. Research ethics
The research will respect the confidentiality 

and anonymity of all subjects. All participants 
provided with sufficient information about the 
research subject and are informed about the 
contents of the research. The research causes 
no significant harm or threat to participants, 
physically and emotionally. The research is 
independent and impartial

III. RESULTS
Model Classification Performance

Machine learning (ML) models (Decision 
Tree [DT], Random Forest [RF], Logistic 
Regression [LR]) were evaluated on a validation 
set of 111 samples (55 β-thalassemia cases, 56 

controls) across three experiments, assessing 
the impact of data preprocessing and parameter 
optimization. Performance metrics (accuracy, 
precision, recall, F1-score, AUC) are reported 
with 95% confidence intervals (CIs).

Experiment 1. Classification Using 
Original Dataset

Models trained on the original dataset (252 
cases, 263 controls) exhibited suboptimal 
performance (Table 2). LR achieved the highest 
accuracy (0.77 [95% CI: 0.69 - 0.84]), followed 
by RF (0.59 [95% CI: 0.51 - 0.67]) and DT (0.57 
[95% CI: 0.49 - 0.65]). Confusion matrices 
revealed high false negatives (e.g., DT: FN = 
45; RF: FN = 44), indicating poor sensitivity for 
β-thalassemia detection.

Table 2. Performance of Machine Learning Models on Original Imbalanced Dataset

Model Classification Precision Recall
F1-

score
Accuracy            
(95% CI)

AUC (95% CI)

DT
Non-β-thalassemia 0.84 0.20 0.33 0.57                  

(0.49 - 0.65)
0.58             

(0.50 - 0.66)β-thalassemia 0.54 0.96 0.69

RF
Non-β-thalassemia 0.92 0.21 0.34 0.59                     

(0.51 - 0.67)
0.60             

(0.52 - 0.68)β-thalassemia 0.55 0.98 0.70

LR
Non-β-thalassemia 0.69 1.00 0.82 0.77                       

(0.69 - 0.84)
0.77             

(0.69 - 0.84)β-thalassemia 1.00 0.54 0.70

DT, Decision Tree; RF, Random Forest; LR, Logistic Regression. Metrics calculated on a validation set 
of 111 samples (55 β-thalassemia, 56 controls). Accuracy and AUC are overall model performance; 
Precision and Recall reported for Non-β-thalassemia and β-thalassemia, respectively; F1-score = 
2 * (Precision * Recall) / (Precision + Recall). 95% CIs from bootstrap analysis (1,000 iterations). 
Confusion matrices: DT (TP = 53, TN = 11, FP = 45, FN = 2), RF (TP = 54, TN = 12, FP = 44, FN = 
1), LR (TP = 30, TN = 56, FP = 0, FN = 25)

Experiment 2. Oversampling with SMOTE 
and ADASYN

SMOTE oversampling improved 
performance, with RF achieving the highest 
accuracy (0.96 [95% CI: 0.92 - 0.99]; AUC, 
0.96 [95% CI: 0.93 - 0.98]; F1-score, 0.96). DT 
and LR reached accuracies of 0.81 (95% CI: 

0.74 - 0.87) and 0.90 (95% CI: 0.84 - 0.95), 
respectively. RF’s confusion matrix (TP = 54, 
TN = 55, FP = 1, FN = 1) showed near-perfect 
classification. ADASYN yielded variable results: 
RF and LR accuracies were 0.90 (95% CI: 0.84 - 
0.95) and 0.91 (95% CI: 0.85 - 0.96), but DT was 
poor (0.58 [95% CI: 0.50 - 0.66]). Oversampling 
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results are reported in Supporting Information 
(Tables S1 and S2).

Experiment 3. Oversampling with Feature 
Selection

Combining SMOTE with PCA/SVD (Table 
3) optimized performance, with RF and DT 
achieving accuracies of 0.95 (95% CI: 0.91 
- 0.98; AUC, 0.96 [95% CI: 0.93 - 0.98]; F1-
score, 0.95) and LR at 0.925 (95% CI, 0.88 

- 0.96). RF’s confusion matrix (TP = 53, TN = 
53, FP = 3, FN = 2) indicated high sensitivity 
(96%) and specificity (95%). ADASYN with 
PCA/SVD (Table 4) produced the highest DT 
accuracy (0.97 [95% CI: 0.94 - 0.99]; AUC, 0.97 
[95% CI: 0.95 - 0.99]), but RF dropped to 0.85 
(95% CI: 0.78 - 0.91), highlighting ADASYN’s 
inconsistency.

Table 3. Performance of Machine Learning Models with SMOTE and PCA/SVD

Model Classification Precision Recall
F1-

score
Accuracy               
(95% CI)

AUC (95% CI)

DT
Non-β-thalassemia 0.93 0.98 0.95 0.95                     

(0.91 - 0.98)
0.95           (0.91 

- 0.98)β-thalassemia 0.98 0.93 0.95

RF
Non-β-thalassemia 0.95 0.96 0.95 0.95                     

(0.91 - 0.98)
0.96                  

(0.92 - 0.99)β-thalassemia 0.96 0.94 0.95

LR
Non-β-thalassemia 0.85 1.00 0.92 0.93                   

(0.88 - 0.96)
0.91                    

(0.86 - 0.95)β-thalassemia 1.00 0.82 0.90
DT, Decision Tree; RF, Random Forest; LR, Logistic Regression; PCA, Principal Component Analysis; 
SVD, Singular Value Decomposition. Metrics calculated on a validation set of 111 samples (55 
β-thalassemia, 56 controls). Precision, Recall, and F1-score reported for Non-β-thalassemia (upper 
row) and β-thalassemia (lower row) per model. 95% CIs from bootstrap analysis (1,000 iterations). 
Confusion matrices: DT (TP = 54, TN = 55, FP = 1, FN = 1), RF (TP = 53, TN = 53, FP = 3, FN = 2), 
LR (TP = 45, TN = 56, FP = 0, FN = 10)

Table 4. Performance of Machine Learning Models with ADASYN and PCA/SVD

Model Classification Precision Recall
F1-

score
Accuracy                
(95% CI)

AUC (95% CI)

DT
Non-β-thalassemia 0.94 1.00 0.97 0.97                 

(0.94 - 0.99)
0.97                

(0.94 - 0.99)β-thalassemia 1.00 0.94 0.97

RF
Non-β-thalassemia 0.97 0.71 0.82 0.85                  

(0.78 - 0.91)
0.84                   

(0.77 - 0.90)β-thalassemia 0.77 0.98 0.86

LR
Non-β-thalassemia 0.85 1.00 0.92 0.92                    

(0.88 - 0.96)
0.91                           

(0.86 - 0.95)β-thalassemia 1.00 0.82 0.90
DT, Decision Tree; RF, Random Forest; LR, Logistic Regression; PCA, Principal Component Analysis; 
SVD, Singular Value Decomposition. Metrics calculated on a validation set of 111 samples (55 
β-thalassemia, 56 controls). Precision, Recall, and F1-score reported for Non-β-thalassemia (upper 
row) and β-thalassemia (lower row) per model. 95% CIs from bootstrap analysis (1,000 iterations). 
Confusion matrices: DT (TP = 55, TN = 54, FP = 1, FN = 1), RF (TP = 54, TN = 40, FP = 2, FN = 15), 
LR (TP = 45, TN = 56, FP = 0, FN = 10)
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Parameter Optimization
Using RF with SMOTE and PCA/SVD, 

training set size impacted performance (Table 
5). A 500-sample set yielded the highest 
accuracy (0.95 [95% CI: 0.91 - 0.98]), declining 
to 0.92 (95% CI, 0.87-0.96) at 400 samples 
and 0.90 (95% CI: 0.84 - 0.94) at 300 samples. 
Class balance (Table 6) showed a 60:40 

ratio as optimal (0.94 [95% CI: 0.90 - 0.97]), 
with 50:50 and 40:60 at 0.92 (95% CI: 0.87 
- 0.96). Test set size results are reported in 
Supporting Information (Table S3). The AUC 
performance of the Random Forest (RF) model 
with SMOTE+PCA/SVD across varying test set 
sizes is shown in Chart 1.

Table 5. Performance of Random Forest with SMOTE and PCA/SVD                                         
Across Training Set Sizes

Training 
Set Size

Classification Precision Recall
F1-

score
Accuracy                    
(95% CI)

AUC                   
(95% CI)

 500 
samples

Non-β-thalassemia 0.95 0.96 0.95 0.95                        
(0.91 - 0.98)

0.96                 
(0.92 - 0.99)β-thalassemia 0.96 0.94 0.95

400 
samples

Non-β-thalassemia 0.94 0.89 0.91 0.92                        
(0.87 - 0.96)

0.92                     
(0.87 - 0.96)β-thalassemia 0.89 0.94 0.91

300 
samples

Non-β-thalassemia 0.81 1.00 0.89 0.90                   
(0.84 - 0.94)

0.88                     
(0.82 - 0.93)β-thalassemia 1.00 0.76 0.86

Metrics calculated using Random Forest with SMOTE, PCA, and SVD on a validation set of 111 
samples (55 β-thalassemia, 56 controls). Precision, Recall, and F1-score reported for Non-β-
thalassemia (upper row) and β-thalassemia (lower row). 95% CIs from bootstrap analysis (1,000 
iterations). Confusion matrices: 500 samples (TP = 53, TN = 53, FP = 3, FN = 2), 400 samples (TP = 
49, TN = 50, FP = 5, FN = 7), 300 samples (TP = 42, TN = 56, FP = 0, FN = 13)

Table 6. Performance of Random Forest with SMOTE and PCA/SVD Across Class Ratios

Class 
Ratio

Classification Precision Recall F1-score
Accuracy                        
(95% CI)

AUC                   
(95% CI)

60:40
Non-β-thalassemia 0.90 0.98 0.94 0.94                          

(0.90 - 0.97)
0.94                         

(0.90 - 0.97)β-thalassemia 0.98 0.88 0.93

50:50
Non-β-thalassemia 0.90 0.95 0.92 0.92                          

(0.87 - 0.96)
0.92                           

(0.87 - 0.96)β-thalassemia 0.94 0.89 0.91

40:60
Non-β-thalassemia 0.90 0.95 0.92 0.92                          

(0.87 - 0.96)
0.92                          

(0.87 - 0.96)β-thalassemia 0.94 0.89 0.91

Metrics calculated using Random Forest with SMOTE, PCA, and SVD on a validation set of 111 
samples (55 β-thalassemia, 56 controls). Precision, Recall, and F1-score reported for Non-β-
thalassemia (upper row) and β-thalassemia (lower row). 95% CIs from bootstrap analysis (1,000 
iterations). Confusion matrices: 60:40 (TP = 54, TN = 55, FP = 1, FN = 1), 50:50 (TP = 52, TN = 53, 
FP = 3, FN = 3), 40:60 (TP = 52, TN = 53, FP = 3, FN = 3)
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The RF model was tested with test sizes 
from 0.05 to 0.6 on a 500-sample training set. 

Results are shown in Table S3 and Chart 1.

Chart 1. AUC vs Test Set Size for the Random Forest Model (SMOTE + PCA)
 

The receiver operating performance of 
the Random Forest (RF) model trained with 
SMOTE and PCA is shown across varying test 
set proportions (0.05 – 0.6). The highest AUC 
values (0.95 – 0.96) were observed for smaller 
test sizes (0.05 – 0.2), indicating model stability 
and optimal generalization under moderate 
data partitioning. AUC decreased when the test 
proportion exceeded 0.3, suggesting sensitivity 
to limited training data.8

IV. DISCUSSION
This study evaluated machine learning 

(ML) models for β-thalassemia screening using 
complete blood count (CBC) data from 515 
students in Lai Châu province, Vietnam (49% 
β-thalassemia, 51% controls), excluding iron-
deficiency anemia cases.3 Three experiments 
explored the effects of data preprocessing, 
feature extraction, and parameter optimization, 
demonstrating that ML can serve as a cost-
effective and non-invasive screening tool for 
β-thalassemia in resource-limited settings.

Initial experiments on the original imbalanced 
dataset revealed modest accuracies (Logistic 
Regression [LR]: 0.77 [95% CI: 0.69 - 0.84], 
Random Forest [RF]: 0.59 [95% CI: 0.51 - 
0.67], Decision Tree [DT]: 0.57 [95% CI: 0.49 
- 0.65]), driven by high false negatives (e.g., 
DT: FN = 45), underscoring the challenge of 
class imbalance in hematologic ML tasks.4 
These findings are consistent with prior studies, 
such as Rustam et al. (2022), who reported 
accuracies of 0.90 – 0.91 on balanced datasets, 
and Saleem et al. (2023), who achieved 0.83 – 
0.88 on imbalanced data, reinforcing the need 
for data-balancing techniques.8,10

Oversampling with SMOTE and ADASYN, 
combined with PCA/SVD, significantly improved 
model performance. SMOTE with PCA/SVD 
yielded optimal results (RF: 0.95 [95% CI: 0.91 
- 0.98], DT: 0.95 [95% CI: 0.91 - 0.98], LR: 0.93 
[95% CI: 0.88 - 0.96]; AUC ≈ 0.96; F1-score ≈ 
0.95), with RF demonstrating high sensitivity 
(98%) and specificity (96%) (TP = 53, TN = 
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53, FP = 3, FN = 2).11 ADASYN with PCA/SVD 
excelled with DT (0.97 [95% CI: 0.94 - 0.99], 
AUC 0.97), but RF performance declined to 
0.85 [95% CI: 0.78 - 0.91], reflecting model-
specific responses to synthetic data generation, 
as noted by Chawla et al. (2002).11 These 
outcomes align with DeepThal (2022) and 
Christensen et al. (2025), who reported AUCs 
> 0.95, despite our study’s smaller, regionally 
focused cohort.14

Parameter optimization further refined 
results. A 500-sample training set maximized 
RF accuracy (0.95 [95% CI: 0.91 - 0.98]), 
declining to 0.90 [95% CI: 0.84 - 0.94] at 300 
samples, supporting Li et al.’s (2021) emphasis 
on dataset size.12 A 60:40 class ratio optimized 
accuracy (0.94 [95% CI: 0.90 - 0.97]), suggesting 
mild imbalance mirrors real-world prevalence, 
consistent with Batista et al. (2004).15 Test set 
size analysis (Table S3) showed peak AUCs 
(0.95 – 0.96) at 0.05 – 0.2, declining beyond 0.3, 
indicating sensitivity to training data availability.

Compared to traditional hematologic indices 
such as Mentzer (MCV/RBC, sensitivity 74 – 
90%) and Shine & Lal (MCV² × MCH × 0.01), 
the optimized RF model achieved markedly 
higher diagnostic accuracy (sensitivity 98%, 
specificity 96%), substantially reducing false 
negatives-an essential advantage for early 
carrier detection and public health screening.16,17 
Integrating such ML tools into Vietnam’s 
existing CBC-based screening workflows could 
enhance accessibility, particularly in remote or 
low-resource areas where molecular testing 
remains unavailable.

Nevertheless, several limitations should 
be acknowledged. This study relied solely 
on HPLC as the confirmatory method 
without genetic validation. Although HPLC is 
considered sufficient by WHO, TIF, and ARUP 
guidelines, it may not detect silent or compound 

mutations.1-3 Furthermore, the single-center 
design and relatively small sample size may 
limit generalizability. Future multi-center studies 
incorporating genetic confirmation and larger, 
demographically diverse cohorts are needed 
to verify the scalability and clinical utility of ML-
based thalassemia screening in Vietnam.

V. CONCLUSION
This study demonstrated that machine 

learning (ML) models, particularly Random 
Forest and Decision Tree algorithms enhanced 
with SMOTE and PCA/SVD preprocessing, 
can accurately screen for β-thalassemia using 
complete blood count (CBC) parameters 
alone. The approach achieved high diagnostic 
performance while maintaining affordability and 
simplicity, supporting its potential integration 
into routine hematology screening in resource-
limited settings.

However, as this single-center study was 
based on a relatively small dataset without 
genetic confirmation, further validation across 
multiple centers and inclusion of molecular data 
are warranted to confirm the generalizability 
and clinical utility of ML-based β-thalassemia 
screening in Vietnam.
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