17. Ứng dụng chất tiết tế bào gốc trung mô trong da liễu thẩm mỹ
Nội dung chính của bài viết
Tóm tắt
Lão hóa là một quá trình sinh học tất yếu ở mọi sinh vật sống. Trong những năm gần đây, các phương pháp chống lão hóa đã nhanh chóng phát triển để đáp ứng nhu cầu làm đẹp, tế bào gốc và các dẫn xuất của chúng đã trở thành một xu hướng tiềm năng trong lĩnh vực này. Tế bào gốc tiết ra các yếu tố tăng trưởng, cytokine, chemokine, yếu tố tạo mạch, peptide kháng khuẩn... đã được chứng minh là có tác động tích cực đến quá trình lão hóa da. Trong bài đánh giá này, chúng tôi tóm tắt cơ chế của các chất tiết từ tế bào gốc trong việc ngăn ngừa lão hóa da, phân lập và nuôi cấy tế bào gốc trung mô cũng như các quy trình chuẩn bị chất tiết. Ngoài ra, chúng tôi đề cập đến hiệu quả, hệ thống phân phối, khuyến nghị và triển vọng của các sản phẩm có nguồn gốc từ tế bào gốc. Tóm lại, so với các phương pháp điều trị chống lão hóa hiện có khác, chất tiết tế bào gốc có hiệu quả và tiềm năng vượt trội hơn. Tuy nhiên, việc sử dụng rộng rãi các sản phẩm này chưa được khuyến khích do thiếu các thử nghiệm lâm sàng trên người về tính an toàn và ổn định của chúng.
Chi tiết bài viết
Từ khóa
Tế bào gốc trung mô, chất tiết tế bào gốc, tái tạo da, trẻ hoá da, chế phẩm tế bào gốc
Tài liệu tham khảo
2. Biehl J K, Russell B. Introduction to stem cell therapy. Journal of Cardiovascular Nursing. 2009;24(2):98-103.
3. Kim W, Park E, Yoo H S, et al. Recent advances in monitoring stem cell status and differentiation using nano-biosensing technologies. Nanomaterials. 2022;12(17):2934.
4. Vojnits K, Li Y. The current knowledge of immune privilege in stem cells. J Transplant Stem Cel Biol. 2014;1(1):4.
5. Hoang D M, Pham P T, Bach T Q, et al. Stem cell-based therapy for human diseases. Signal transduction and targeted therapy. 2022;7(1):1-41.
6. Ullah I, Subbarao R B, Rho G J. Human mesenchymal stem cells-current trends and future prospective. Bioscience reports. 2015;35(2):e00191.
7. Horwitz E M, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393-395.doi: 10.1080/14653240500319234.
8. Vagaska B, New S E P, Alvarez-Gonzalez C, et al. MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFNγ–independent fashion and during development. Scientific reports. 2016;6(1):24251.
9. Machado C D V, Telles P D D S, Nascimento I L O. Immunological characteristics of mesenchymal stem cells. Revista brasileira de hematologia e hemoterapia. 2013;35:62-67.
10. Franquesa M, Herrero E, Torras J, et al. Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. Stem cells and development. 2012;21(17):3125-3135.
11. Dominici M L B K, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317.
12. Prianishnikov V A. On the concept of stem cell and a model of functional-morphological structure of the endometrium. Contraception. 1978;18(3):213-223.
13. Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences. 2000;97(25):13625-13630. doi: 10.1073/pnas.240309797.
14. Qu-Petersen Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. The Journal of cell biology. 2002;157(5):851-864. doi: 10.1083/jcb.200108150.
15. In’t Anker P S, Scherjon S A, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem cells. 2004;22(7):1338-1345. doi: 10.1634/stemcells.2004-0058.
16. Zuk P A, Zhu M I N, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering. 2001;7(2):211-228. doi: 10.1089/107632701300062859.
17. Doi H, Kitajima Y, Luo L, et al. Potency of umbilical cord blood-and Wharton’s jelly-derived mesenchymal stem cells for scarless wound healing. Scientific Reports. 2016;6(1):18844. doi: 10.1038/srep18844.
18. Mcelreavey K D, Irvine A I, Ennis K T, et al. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton’s jelly portion of human umbilical cord. Biochem Soc Trans. 1991;19(1):29S. doi: 10.1042/bst019029s.
19. Teo G S, Ankrum J A, Martinelli R, et al. Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem cells. 2012;30(11):2472-2486.
20. Deans R J, Moseley A B. Mesenchymal stem cells: biology and potential clinical uses. Experimental hematology. 2000;28(8):875-884.
21. Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy. Circulation research. 2008;103(11):1204-1219.
22. Parekkadan B, Milwid J M. Mesenchymal stem cells as therapeutics. Annual review of biomedical engineering. 2010;12:87-117.
23. Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Frontiers in immunology. 2012;3:32434.
24. Xia J, Minamino S, Kuwabara K, et al. Stem cell secretome as a new booster for regenerative medicine. Bioscience Trends. 2019;13(4):299-307.
25. Kumar P, Kandoi S, Misra R, et al. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine & growth factor reviews. 2019;46:1-9.
26. Hsu Y C, Li L, Fuchs E. Emerging interactions between skin stem cells and their niches. Nature medicine. 2014;20(8):847-856. doi: 10.1038/nm.3643.
27. Papaccio F, D′ Arino A, Caputo S, et al. Focus on the contribution of oxidative stress in skin aging. Antioxidants. 2022;11(6):1121.
28. Bragulla H H, Homberger D G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. Journal of anatomy. 2009;214(4):516-559.doi: 10.1111/j.1469-7580.2009.01066.x.
29. Clayton K, Vallejo A F, Davies J, et al. Langerhans cells - programmed by the epidermis. Frontiers in immunology. 2017;8:316131.doi: 10.3389/fimmu.2017.01676.
30. Nielsen K P, Zhao L, Stamnes J J, et al. The importance of the depth distribution of melanin in skin for DNA protection and other photobiological processes. Journal of Photochemistry and Photobiology B: Biology. 2006;82(3):194-198.
31. Haeberle H, Lumpkin E A. Merkel cells in somatosensation. Chemosensory perception. 2008;1:110-118. doi: 10.1007/s12078-008-9012-6.
32. Prost-Squarcioni C, Fraitag S, Heller M, et al. Functional histology of dermis. In Annales de dermatologie et de venereology. 2008;135(1Pt2):1S5-20. doi: 10.1016/S0151-9638(08)70206-0.
33. Tsepkolenko A, Tsepkolenko V, Dash S, et al. The regenerative potential of skin and the immune system. Clin. Cosmet. Investig. Dermatol. 2019;12:519-532.
34. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends in cell biology, 2003;13(5):264-269. doi: 10.1016/S0962-8924(03)00057-6.
35. Muiznieks L D, Keeley F W. Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2013;1832(7), 866-875. doi: 10.1016/j.bbadis.2012.11.022.
36. Moon T C, Befus A D, Kulka M. Mast cell mediators: their differential release and the secretory pathways involved. Frontiers in immunology. 2014;5:119335. doi: 10.3389/fimmu.2014.00569.
37. Stecco C, Hammer W, Vleeming A, et al. Functional Atlas of the Human Fascial System. Churchill Livingstone; London, UK. 2015:21-49.
38. Lee H, Hong Y, Kim M. Structural and functional changes and possible molecular mechanisms in aged skin. International journal of molecular sciences. 2021;22(22):12489.
39. Hani R, Khayat L, Rahman A A, et al. Effect of stem cell secretome in skin rejuvenation: a narrative review. Molecular Biology Reports. 2023;50(9):7745-7758.
40. Yusharyahya S N, Japranata V V, Sitohang I B S, et al. A comparative study on adipose-derived mesenchymal stem cells secretome delivery using microneedling and fractional CO2 laser for facial skin rejuvenation. Clinical, cosmetic and investigational dermatology. 2023;387-395.Madrigal M, Rao K S, Riordan N H. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. Journal of translational medicine. 2014;12:1-14.
41. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual review of cell and developmental biology. 2014;30:255-289. doi: 10.1146/annurev-cellbio-101512-122326.
42. Colombo M, Giannandrea D, Lesma E, et al. Extracellular vesicles enhance multiple myeloma metastatic dissemination. International journal of molecular sciences. 2019;20(13):3236. doi: 10.3390/ijms20133236.
43. Record M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2014;1841(1):108-120. doi: 10.1016/j.bbalip.2013.10.004.
44. Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226-1232.doi: 10.1016/j.cell.2016.01.043.
45. Kim Y J, Ahn H J, Lee S H, et al. Effects of conditioned media from human umbilical cord blood-derived mesenchymal stem cells in the skin immune response. Biomedicine & Pharmacotherapy. 2020;131:110789.
46. Kim S N, Lee C J, Nam J, et al. The effects of human bone marrow-derived mesenchymal stem cell conditioned media produced with fetal bovine serum or human platelet lysate on skin rejuvenation characteristics. International Journal of Stem Cells. 2021;14(1):94.
47. Fraile M, Eiro N, Costa L A, et al. Aging and mesenchymal stem cells: basic concepts, challenges and strategies. Biology. 2022;11(11):1678.
48. Ahangar P, Mills S J, Cowin A J. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair. International journal of molecular sciences. 2020;21(19):7038.
49. Trzyna A, Banaś-Ząbczyk A. Adipose-derived stem cells secretome and its potential application in “stem cell-free therapy”. Biomolecules. 2021;11(6):878.
50. Khanh V C, Yamashita T, Ohneda K, et al. Rejuvenation of mesenchymal stem cells by extracellular vesicles inhibits the elevation of reactive oxygen species. Scientific Reports. 2020;10(1):17315.
51. Maacha S, Sidahmed H, Jacob S, et al. Paracrine mechanisms of mesenchymal stromal cells in angiogenesis. Stem cells international. 2020;2020:4356359.
52. Ma T, Chen Y, Chen Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells International. 2018;2018:3290372. doi: 10.1155/2018/3290372.3290372
53. Salinas-Vera Y M, Marchat L A, Gallardo-Rincón D, et al. MicroRNAs driving angiogenesis in cancer (Review) Int. J. Mol. Med. 2019;43:657-670. doi: 10.3892/ijmm.2018.4003.
54. Ferguson S W, Wang J, Lee C J, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Scientific reports. 2018;8(1):1419. doi: 10.1038/s41598-018-19581-x.
55. Baglio S R, Rooijers K, Koppers-Lalic D, et al. Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem cell research & therapy, 2015;6:1-20. doi: 10.1186/s13287-015-0116-z
56. De Luca L, Trino S, Laurenzana I, et al. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation. Oncotarget, 2016;7(6):6676. doi: 10.18632/oncotarget.6791.
57. Ounzain S, Crippa S, Pedrazzini T. Small and long non-coding RNAs in cardiac homeostasis and regeneration. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(4):923-933. doi: 10.1016/j.bbamcr.2012.08.010.
58. Ounzain S, Pedrazzini T. The promise of enhancer-associated long noncoding RNAs in cardiac regeneration. Trends in cardiovascular medicine. 2015;25(7):592-602.doi: 10.1016/j.tcm.2015.01.014.
59. Li B, Zhang H, Zeng M, et al. Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/β-catenin pathway. Cell Biology International. 2015;39(2):192-200.
60. He A, Jiang Y, Gui C, et al. The antiapoptotic effect of mesenchymal stem cell transplantation on ischemic myocardium is enhanced by anoxic preconditioning. Canadian Journal of Cardiology. 2009;25(6):353-358.
61. Wang Y, Chen X, Cao W, et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nature immunology. 2014;15(11):1009-1016.
62. Ryan J M, Barry F P, Murphy J M, et al. Mesenchymal stem cells avoid allogeneic rejection. Journal of inflammation. 2005;2:1-11.
63. Charles-de-Sá L, Gontijo-de-Amorim N F, Rigotti G, et al. Photoaged skin therapy with adipose-derived stem cells. Plastic and Reconstructive Surgery. 2020;145(6):1037e-1049e.
64. Liu Z, Hu G D, Luo X B, et al. Potential of bone marrow mesenchymal stem cells in rejuvenation of the aged skin of rats. Biomedical reports. 2017;6(3):279-284.
65. Brunet A, Goodell M A, Rando T A. Ageing and rejuvenation of tissue stem cells and their niches. Nature Reviews Molecular Cell Biology. 2023;24(1):45-62.
66. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872.
67. Zhong C, Liu M, Pan X, et al. Tumorigenicity risk of iPSCs in vivo: nip it in the bud. Precision Clinical Medicine. 2022;5(1):pbac004.
68. Park S R, Kim J W, Jun H S, et al. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing. Molecular Therapy. 2018;26(2):606-617. doi: 10.1016/j.ymthe.2017.09.023
69. Aryan A, Bayat M, Bonakdar S, et al. Human bone marrow mesenchymal stem cell conditioned medium promotes wound healing in deep second-degree burns in male rats. Cells Tissues Organs. 2019;206(6):317-329.
70. Li M, Zhao Y, Hao H, et al. Umbilical cord–derived mesenchymal stromal cell–conditioned medium exerts in vitro antiaging effects in human fibroblasts. Cytotherapy. 2017;19(3):371-383.
71. Wiśniewska J, Słyszewska M, Stałanowska K, et al. Effect of pig-adipose-derived stem cells’ conditioned media on skin wound-healing characteristics in vitro. International Journal of Molecular Sciences. 2021;22(11):5469.
72. Hsiao S T, Lokmic Z, Peshavariya H, et al. Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells. Stem cells and development. 2013;22(10):1614-1623.
73. Santos J M, Camões S P, Filipe E, et al. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem cell research & therapy. 2015;6:1-19. doi: 10.1186/s13287-015-0082-5
74. Sun B, Guo S, Xu F, et al. Concentrated hypoxia-preconditioned adipose mesenchymal stem cell-conditioned medium improves wounds healing in full-thickness skin defect model. International Scholarly Research Notices. 2014;2014:652713.
75. Collawn S S, Mobley J A, Banerjee N S, et al. Conditioned media from adipose-derived stromal cells accelerates healing in 3-dimensional skin cultures. Annals of Plastic Surgery. 2016;76(4):446-452.
76. Shu F, Lu J, Zhang W, et al. JAM-A overexpression in human umbilical cord-derived mesenchymal stem cells accelerated the angiogenesis of diabetic wound by enhancing both paracrine function and survival of mesenchymal stem cells. Stem Cell Reviews and Reports. 2023;19(5):1554-1575.
77. Sabzevari R, Roushandeh A M, Mehdipour A, et al. SA/G hydrogel containing hCAP-18/LL-37-engineered WJ-MSCs-derived conditioned medium promoted wound healing in rat model of excision injury. Life sciences. 2020;261:118381.
78. Damayanti R H, Rusdiana T, Wathoni N. Mesenchymal stem cell secretome for dermatology application: a review. Clinical, cosmetic and investigational dermatology. 2021;1401-1412.
79. Zhou P, Li X, Zhang B, et al. A human umbilical cord mesenchymal stem cell-conditioned medium/chitosan/collagen/β-glycerophosphate thermosensitive hydrogel promotes burn injury healing in mice. BioMed research international. 2019;2019:5768285.
80. Wang L, Abhange K K, Wen Y, et al. Preparation of engineered extracellular vesicles derived from human umbilical cord mesenchymal stem cells with ultrasonication for skin rejuvenation. ACS omega. 2019;4(27):22638-22645.
81. Liu P, Yang S, Shao X, et al. Mesenchymal Stem Cells-Derived Exosomes Alleviate Acute Lung Injury By Inhibiting Alveolar Macrophage Pyroptosis. Stem Cells Translational Medicine. 2024;13(4):371-386.
82. Amirthalingam M, Bhat S, Dighe P A, et al. Human mesenchymal stromal cells-derived conditioned medium based formulation for advanced skin care: in vitro and in vivo evaluation. J Stem Cells Res Dev Ther. 2019;5:1-8.
83. Kuljanin M, Elgamal R M, Bell G I, et al. Quantitative proteomics evaluation of human multipotent stromal cell for β cell regeneration. Cell reports. 2018;25(9):2524-2536.
84. Wangler S, Kamali A, Wapp C, et al. Uncovering the secretome of mesenchymal stromal cells exposed to healthy, traumatic, and degenerative intervertebral discs: a proteomic analysis. Stem Cell Research & Therapy. 2021;12:1-17.
85. Levy D, Jeyaram A, Born L J, et al. Impact of storage conditions and duration on function of native and cargo-loaded mesenchymal stromal cell extracellular vesicles. Cytotherapy. 2023;25(5):502-509. doi: 10.1016/j.jcyt.2022.11.006
86. Umar A K. Stem cell’s secretome delivery systems. Advanced Pharmaceutical Bulletin. 2023;13(2):244.
87. Zavala G, Ramos M P, Figueroa-Valdés A I, et al. Semipermeable cellulose beads allow selective and continuous release of small extracellular vesicles (sEV) from encapsulated cells. Frontiers in Pharmacology. 2020;11:679.
88. Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886. doi: 10.3390/cells8080886
89. Giacomini C, Granéli C, Hicks R, et al. The critical role of apoptosis in mesenchymal stromal cell therapeutics and implications in homeostasis and normal tissue repair. Cellular & Molecular Immunology. 2023;20(6):570-582.
90. Chou Y, Alfarafisa N M, Ikezawa M, et al. Progress in the development of stem cell-derived cell-free therapies for skin aging. Clinical, Cosmetic and Investigational Dermatology. 2023;3383-3406.
91. Yim H E, Kim D S, Chung H C, et al. Controlled delivery of stem cell-derived trophic factors accelerates kidney repair after renal ischemia-reperfusion injury in rats. Stem Cells Translational Medicine. 2019;8(9):959-970. doi: 10.1002/sctm.18-0222.
92. Shoma Suresh K, Bhat S, Guru B R, et al. A nanocomposite hydrogel delivery system for mesenchymal stromal cell secretome. Stem cell research & therapy. 2020;11:1-14. doi: 10.1186/s13287-020-01712-9.
93. Lai C P, Mardini O, Ericsson M, et al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS nano. 2014;8(1):483-494. doi: 10.1021/nn404945r.
94. Ogle M E, Doron G, Levy M J, et al. Hydrogel culture surface stiffness modulates mesenchymal stromal cell secretome and alters senescence. Tissue Engineering Part A. 2020;26(23-24):1259-1271. doi: 10.1089/ten.tea.2020.0030.
95. Zhang B, Lai R C, Sim W K, et al. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation. International journal of molecular sciences. 2021;22(2):720.
96. Kee L T, Ng C Y, Al-Masawa M E, et al. Extracellular vesicles in facial aesthetics: a review. International Journal of Molecular Sciences. 2022;23(12):6742.
97. Bui V D, Son S, Xavier W, et al. Dissolving microneedles for long-term storage and transdermal delivery of extracellular vesicles. Biomaterials. 2022;287:121644.
98. Ravi A D, Sadhna D, Nagpaal D, et al. Needle free injection technology: A complete insight. International journal of pharmaceutical investigation. 2015;5(4):192.
99. Hu S, Li Z, Cores J, et al. Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging. ACS nano. 2019;13(10):11273-11282.
100. Bahram M, Mohseni N, Moghtader M. An introduction to hydrogels and some recent applications. In: Emerging concepts in analysis and applications of hydrogels. IntechOpen. 2016.
101. Shafei S, Khanmohammadi M, Heidari R, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study. Journal of Biomedical Materials Research Part A. 2020;108(3):545-556.
102. Nooshabadi V T, Khanmohamadi M, Valipour E, et al. Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. Journal of Biomedical Materials Research Part A. 2020;108(11):2138-2149.
103. Li Q, Gong S, Yao W, et al. Exosome loaded genipin crosslinked hydrogel facilitates full thickness cutaneous wound healing in rat animal model. Drug Delivery. 2021;28(1):884-893.
104. Zhao D, Yu Z, Li Y, et al. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration. Journal of molecular histology. 2020;51:251-263.
105. Nagy K, Láng O, Láng J, et al. A novel hydrogel scaffold for periodontal ligament stem cells. Interventional Medicine and Applied Science. 2018;10(3):162-170.
106. Amirthalingam M, Seetharam R N. Stem cell derived cosmetic products, an overview. Manipal J. Med. Sci. 2016;1:46-52.
107. Hahm J, Kim J, Park J. Strategies to enhance extracellular vesicle production. Tissue Engineering and Regenerative Medicine. 2021;18(4):513-524.
108. Konoshenko M Y, Lekchnov E A, Vlassov A V, et al. Isolation of extracellular vesicles: general methodologies and latest trends. BioMed research international. 2018;2018:8545347.
109. Jeyaram A, Jay S M. Preservation and storage stability of extracellular vesicles for therapeutic applications. The AAPS journal. 2018;20:1-7.
110. Ha D H, Kim S D, Lee J, et al. Toxicological evaluation of exosomes derived from human adipose tissue-derived mesenchymal stem/stromal cells. Regulatory Toxicology and Pharmacology. 2020;115:104686.
111. Jeong W Y, Kwon M, Choi H E, et al. Recent advances in transdermal drug delivery systems: A review. Biomaterials research. 2021;25(1):24.