2. Stability and safety study of liquid-suspension bacillus clausii spore probiotics (livespo clausy)

Tran Thi My, Le Phuong Dung, Nguyen Thi Lien, Nguyen Thi Van Anh, Nguyen Hoa Anh

Nội dung chính của bài viết

Tóm tắt

Bacillus clausii has been used as probiotic bacteria in dietary supplements because of its main probiotic activities, including its multi-antibiotic resistance, digestive enzyme production, vitamin synthesis, and immunomodulatory effects. In this study, heat, and acid-stability, acute and sub-acute toxicity were conducted to evaluate the stability and safety of liquid-suspension probiotics (LiveSpo® Clausy, LiveSpo Pharma) containing spores of Bacillus clausii ANA39 strain at ≥ 2 billion CFU/5 mL. The result showed that the B. clausii ANA39 spores were heat-resistant, acid pH-stable, and long-time survivors with the remaining survival rate of 80%, 60%, and 80% at treatment conditions of 800C, pH 2.0 for 20 min, and at 300C for 24 months respectively. Acute toxicity data in mice indicated LD50 was not detectable, even at an extremely high dosage of 60 mL/kg (equivalent to 2.4 x 1010 CFU/kg), indicating LiveSpo® Clausy was an unclassified category. The sub-acute toxicity results showed that the rabbits administrated with B. clausii ANA39 at the dosages of 0.93 mL/kg rabbit/day (equivalent to 0.37 x 109 CFU ANA39 spores/kg rabbit/day) and 2.80 mL/kg rabbit/day (equivalent to 1.12 x 109 CFU of B. clausii ANA39 spores/kg rabbit/day) were healthy and steadily gained weight without any abnormal physiology and anatomy. In conclusion, LiveSpo® Clausy probiotics are resistant to high temperatures and low pH acids, stable for at least 24 months at room temperature, and safe for use as a food supplement.

Chi tiết bài viết

Tài liệu tham khảo

1. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front Microbiol. 2017; 8: 1490. doi:10.3389/fmicb.2017.01490.
2. Ellekilde M, Selfjord E, Larsen CS, et al. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice. Sci Rep. 2014; 4(1): 5922. doi:10.1038/srep05922
3. Scott KP, Antoine J-M, Midtvedt T, van Hemert S. Manipulating the gut microbiota to maintain health and treat disease. Microb Ecol Heal Dis. 2015; 26: 25877. doi:10.3402/mehd.v26.25877.
4. Fijan S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int J Environ Res Public Health. 2014; 11(5):4745-4767. doi:10.3390/ijerph110504745
5. Hempel S, Newberry SJ, Maher AR, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA - J Am Med Assoc. 2012;307(18):1959-1969. doi:10.1001/jama.2012.3507.
6. Tompkins TA, Xu X, Ahmarani J. A comprehensive review of post-market clinical studies performed in adults with an Asian probiotic formulation. Benef Microbes. 2010;1(1):93-106. doi:10.3920/BM2008.1005.
7. Ghani M, Ansari A, Aman A, Zohra RR, Siddiqui NN, Qader SAU. Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes. Pak J Pharm Sci. 2013;26(4):691-697.
8. Tanaka K, Takanaka S, Yoshida K. A second-generation Bacillus cell factory for rare inositol production. Bioengineered. 2014; 5(5): 331-334. doi:10.4161/bioe.29897
9. Takano H. The regulatory mechanism underlying light-inducible production of carotenoids in nonphototrophic bacteria. Biosci Biotechnol Biochem. 2016; 80(7): 1264-1273. doi:10.1080/09168451.2016.1156478.
10. Tidjiani Alou M, Rathored J, Khelaifia S, et al. Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut. New Microbes New Infect. 2015; 8: 51-60. doi:10.1016/j.nmni.2015.09.008.
11. Rao L, Bi X, Zhao F, Wu J, Hu X, Liao X. Effect of High-pressure CO2 Processing on Bacterial Spores. Crit Rev Food Sci Nutr. 2016; 56(11): 1808-1825. doi:10.1080/10408398.2013.787385.
12. Ghelardi E, Celandroni F, Salvetti S, Gueye SA, Lupetti A, Senesi S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation. J Appl Microbiol. 2015; 119(2): 552-559. doi:10.1111/jam.12848
13. Lakshmi SG, Jayanthi N, Saravanan M, Ratna MS. Safety assesment of Bacillus clausii UBBC07, a spore forming probiotic. Toxicol Reports. 2017; 4(6): 62-71. doi:10.1016/j.toxrep.2016.12.004.
14. Abbrescia A, Palese LL, Papa S, Gaballo A, Alifano P, Sardanelli A. Antibiotic Sensitivity of Bacillus clausii Strains in Commercial Preparation. Clin Immunol Endocr Metab Drugs. 2015; 1(2): 102-110. doi:10.2174/2212707002666150128195631.
15. Paparo L, Tripodi L, Bruno C, et al. Protective action of Bacillus clausii probiotic strains in an in vitro model of Rotavirus infection. Sci Rep. 2020; 10(1): 12636. doi: 10.1038/s41598-020-69533-7.
16. Urdaci MC, Bressollier P, Pinchuk I. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J Clin Gastroenterol. 2004; 38(6): 86-90. doi:10.1097/01.mcg.0000128925.06662.69.
17. Cenci G, Trotta F, Caldini G. Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of Bacillus clausii. J Appl Microbiol. 2006; 101(6): 1208-1215. doi: 10.1111/j.1365-2672.2006.03042.x.
18. Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol. 2005; 71(2): 968-978. doi:10.1128/AEM.71.2.968-978.2005.
19. Tuohy KM, Pinart-Gilberga M, Jones M, Hoyles L, McCartney AL, Gibson GR. Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora. J Appl Microbiol. 2007; 102(4): 1026-1032. doi: 10.1111/j.1365-2672.2006.03154.x.