2. Mức độ đề kháng và tỉ lệ vi khuẩn dai dẳng với colistin của các chủng Klebsiella pneumoniae

Nguyễn Khắc Tiệp, Thân Thị Dung Nhi, Phạm Hồng Nhung

Nội dung chính của bài viết

Tóm tắt

247 chủng Klebsiella pneumoniae phân lập từ Trung tâm Hồi sức tích cực (HSTC) - Bệnh viện Bạch Mai năm 2019 - 2021 được xác định giá trị nồng độ ức chế tối thiểu (MIC) colistin bằng phương pháp vi pha loãng. Kết quả cho thấy tỉ lệ vi khuẩn kháng với colistin là 29,1%. Lựa chọn các chủng không kháng với colistin (có giá trị MIC ≤ 2µg/ml) thực hiện đánh giá tỉ lệ vi khuẩn dai dẳng với colistin sau 5 giờ và 24 giờ tiếp xúc kháng sinh. Tỉ lệ vi khuẩn dai dẳng với colistin sau 5 giờ và 24 giờ lần lượt là 23% và 19% (giá trị trung bình). Tỉ lệ vi khuẩn dai dẳng với colistin phân bố không đều và không tăng theo MIC.

Chi tiết bài viết

Tài liệu tham khảo

1. Phạm Hồng Nhung. Báo cáo số liệu năm 2018 tại Khoa Hồi sức tích cực Bệnh viện Bạch mai. Cảnh Giác Dược Online. Published online 2019.
2. Nguyễn Hoàng Anh. Tối ưu liều của colistin trên bệnh nhân nặng dựa trên PK/PD: ví dụ về quản lý kháng sinh thông qua làm việc nhóm (hồi sức tích cực - vi sinh - dược lâm sàng). Cảnh Giác Dược Online. Published online 2018.
3. Nguyễn Hoàng Anh. Dược động/lực học (PK/PD) của colistin ứng dụng trong điều trị viêm phối bệnh viện kháng thuốc tại Việt Nam. Cảnh Giác Dược Online. Published online 2017.
4. Nguyen TK, Peyrusson F, Dodémont M, et al. The Persister Character of Clinical Isolates of Staphylococcus aureus Contributes to Faster Evolution to Resistance and Higher Survival in THP-1 Monocytes: A Study With Moxifloxacin. Front Microbiol. 2020;11:587364. doi:10.3389/fmicb.2020.587364
5. Balaban NQ, Helaine S, Lewis K, et al. Definitions and guidelines for research on antibiotic persistence. Nat Rev Microbiol. 2019;17(7):441-448. doi:10.1038/s41579-019-0196-3
6. Dat VQ, Vu HN, Nguyen The H, et al. Bacterial bloodstream infections in a tertiary infectious diseases hospital in Northern Vietnam: aetiology, drug resistance, and treatment outcome. BMC Infect Dis. 2017;17(1):493. doi:10.1186/s12879-017-2582-7
7. Tai AYC, Stuart RL, Sidjabat HE, et al. Local acquisition and nosocomial transmission of Klebsiella pneumoniae harbouring the blaNDM-1 gene in Australia. Med J Aust. 2015;202(5):270-272. doi:10.5694/mja14.01637
8. Pham HN, Than TDN, Nguyen HA, et al. Antibiotic Resistance, Biofilm Formation, and Persistent Phenotype of Klebsiella pneumoniae in a Vietnamese Tertiary Hospital: A Focus on Amikacin. Microb Drug Resist. Published online March 20, 2024. doi:10.1089/mdr.2023.0267
9. Ii JSL, Weinstein MP, Bobenchik AM, et al. Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute. 2020;40(1):362.
10. Cai Y, Lee W, Kwa AL. Polymyxin B versus colistin: an update. Expert Rev Anti Infect Ther. 2015;13(12):1481-1497. doi:10.1586/14787210.2015.1093933
11. Liu Y, Lin Y, Wang Z, et al. Molecular Mechanisms of Colistin Resistance in Klebsiella pneumoniae in a Tertiary Care Teaching Hospital. Front Cell Infect Microbiol. 2021;11:673503. doi:10.3389/fcimb.2021.673503
12. Suh JY, Son JS, Chung DR, et al. Nonclonal emergence of colistin-resistant Klebsiella pneumoniae isolates from blood samples in South Korea. Antimicrob Agents Chemother. 2010;54(1):560-562. doi:10.1128/AAC.00762-09
13. Tan TY, Ng SY. The in-vitro activity of colistin in gram-negative bacteria. Singapore Med J. 2006;47(7):621-624.
14. Walkty A, DeCorby M, Nichol K, et al. In vitro activity of colistin (polymyxin E) against 3,480 isolates of gram-negative bacilli obtained from patients in Canadian hospitals in the CANWARD study, 2007-2008. Antimicrob Agents Chemother. 2009;53(11):4924-4926. doi:10.1128/AAC.00786-09
15. Konstantinos Z Vardakas, Dimitrios K Matthaiou, Matthew E Falagas, et al. Characteristics, risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in the intensive care unit. J Infect. 2015;70(6):592-9. doi: 10.1016/j.jinf. 2014.11.003
16. Ren H, He X, Zou X, et al. Gradual increase in antibiotic concentration affects persistence of Klebsiella pneumoniae. J Antimicrob Chemother. 2015;70(12):3267-3272. doi:10.1093/jac/dkv251
17. Moyed HS, Bertrand KP. HipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol. 1983;155(2):768-775. doi:10.1128/jb.155.2.768-775.1983
18. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2007;5(1):48-56. doi:10.1038/nrmicro1557
19. Mulcahy LR, Burns JL, Lory S, et al. Emergence of Pseudomonas aeruginosa Strains Producing High Levels of Persister Cells in Patients with Cystic Fibrosis. J Bacteriol. 2010;192(23):6191-6199. doi:10.1128/JB.0165 1-09
20. LaFleur MD, Qi Q, Lewis K. Patients with Long-Term Oral Carriage Harbor High-Persister Mutants of Candida albicans. Antimicrob Agents Chemother. 2010;54(1):39-44. doi:10.1128/AAC.00860-09
21. Zhang Y, Yew WW, Barer MR. Targeting Persisters for Tuberculosis Control. Antimicrob Agents Chemother. 2012;56(5):2223-2230. doi:10.1128/AAC.06288-11