26. Antisense oligonucleotide (ASO) therapy in treatment of β-thalasemia patients: A scoping review

Duong Hong Quan, Nguyen Thi Hue, Hoang Minh Cong, Le Van Thu, Ngo Van Lang, Ngo Thi Phuong Oanh

Main Article Content

Abstract

β-thalassemia is an autosomal recessive genetic disease, caused by point mutations or small deletions in the β-globin gene that lead to a reduction or cancellation of the synthesis of the β-globin chain, resulting in an imbalance in the ratio of the α/β-globin chain. Therefore, the ability to target specific mutations will bring positive effects in the treatment of β-thalassemia. Nucleic acid-based therapies including Antisense Oligonucleotides (ASO) therapy can effectively treat of patients with β-thalassemia by ASO entering erythroblast precursor cells, moving to the nucleus and hybridized with abnormal splicing sites to eliminate the pre-mRNA abnormal splicing pattern of β-globin. The result of restored correct splicing is increased expression of β-globin, leading to increased amounts of mature hemoglobin in red blood cells in β-thalassemia. ASO therapy has proven to bring many positive results in patients with β-thalassemia, but further research is needed to ensure safety in using and administering of ASO in treatment of patients with β-thalassemia.

Article Details

References

1. Galanello R, Origa R. Beta-thalassemia. Orphanet J Rare Dis. 2010; 5(11): 1-15. DOI:10.1186/1750-1172-5-11.
2. Origa R. β-thalassemia. Genet Med. 2017; 19(6): 609-619. DOI:10.1038/gim.2016.173.
3. Zakaria NA, Bahar R, Abdullah WZ, et al. Genetic Manipulation Strategies for β-Thalassemia. Front Pediatr. 2022. 10: 901605. DOI: 10.3389/fped.2022.901605.
4. d’Arqom A. Nucleic Acid Therapy for β-Thalassemia. Biologics. 2020. 14: 95-105. DOI: 10.2147/BTT.S265767.
5. Wild BJ, Green BN, Cooper EK, et al. Rapid identification of hemoglobin variants by electrospray ionization mass spectrometry. Blood Cells Mol Dis. 2001. 27(3): 691–704. DOI: 10.1006/bcmd.2001.0430.
6. Goyenvalle A, Jimenez-Mallebrera C, Roon WV, et al. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther. 2023. 33(1): 1-16. DOI: 10.1089/nat.2022.0061.
7. Bajan S, Hutvagner G. RNA-Based Therapeutics: From Antisense Oligonucleotides to miRNAs. Cells. 2020. 9(1): 137. DOI: 10.3390/cells9010137.
8. Egli M, Manoharan M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res. 2023. 51(6): 2529-2573. DOI: 10.1093/nar/gkad067.
9. Quemener AM, Bachelot L, Forestier A, et al. The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdiscip Rev RNA. 2020. 11(5): e1594. DOI: 10.1002/wrna.1594.
10. Crooke ST, Liang XH, Baker BF, et al. Antisense technology. J Biol Chem. 2021. 296: 100416. DOI: 10.1016/j.jbc.2021.100416.
11. Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci. 2021. 22(7): 3295. DOI: 10.3390/ijms22073295.
12. Papaioannou I, Owen JS, Yáňez-Muňoz. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol. 2023. 104(4): 154-176. DOI: 10.1111/iep.12478.
13. Zhang C, Zhang B. RNA therapeutics: updates and future potential. Sci China Life Sci. 2022. 66(1): 12-30. DOI: 10.1007/s11427-022-2171-2.
14. Kuijper EC, Bergsma AJ, Pim Pijnappel WWM. Opportunities and challenges for antisense oligonucleotide therapies. J Inherit Metab Dis. 2021. 44(1): 72-87. DOI: 10.1002/jimd.12251.
15. Kar D, Sellamuthu K, Kumar SD. Induction of Translational Readthrough across the Thalassemia-Causing Premature Stop Codon in β-Globin-Encoding mRNA. Biochemistry. 2020. 59(1): 80-84. DOI: 10.1021/acs.biochem.9b00761.