9. The antibiotic sensitivity patterns of commonly encountered bacteria causing bloodstream infections isolated at Bach Mai Hospital in 2023

Pham Hong Nhung, Mai Thi Lan Huong

Main Article Content

Abstract

Bloodstream infections are life-threatening medical conditions caused by a highly diverse range of pathogens that can develop varying resistance profiles over time. The aim of this study was to identify commonly encountered pathogens causing bloodstream infections and their antibiotic susceptibility patterns among isolates at Bach Mai Hospital in 2023. Among the 2993 pathogenic strains isolated, E. coli (18.1%), S. aureus (17.0%), K. pneumoniae (15.8%), Acinetobacter spp. (9.6%), Enterococcus spp. (6.4%), and P. aeruginosa (3.6%) were the predominant pathogens. E. coli maintained high sensitivity to carbapenems, ceftazidime/avibactam, and amikacin (> 88%). In constrast, K. pneumoniae and P. aeruginosa showed only moderate sensitivity to carbapenems, ceftazidime/avibactam, and amikacin (30 - 60%). K. aerogenes exhibited high resistance to carbapenems (> 88%) but retained high sensitivity to ceftazidime/avibactam (73.8%). A. baumannii showed high resistance to most antibiotic groups (> 80%). While analyzing the antibiogram for S. aureus isolates, methicillin-resistance (MRSA) was observed in 73.3% of cases. Among the Streptococcus viridans, resistance to penicillin was found in 22.6%, and resistance to ceftriaxone was found in 9.4% of cases. In generally, Gram-positive cocci remained highly sensitive to vancomycin (81.6 - 100%). The findings provide clinicians with evidence-based guidance for empirical antibiotic selection in the treatment of bloodstream infections before antibiotic susceptibility results are available.

Article Details

References

1. Rhee C, Dantes R, Epstein L, et al. CDC prevention epicenter program, Incidence and trends of sepsis in US hospitals using clinical vs claims data 2009-2014. JAMA. 2017;318(13):1241-1249.
2. Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect. 2013;19(6):501-509.
3. Gohel K, Jojera A, Soni S, et al. Bacteriological profile and drug resistance patterns of blood culture isolates in a tertiary care nephrourology teaching institute. Biomed Res Int. 2014;2014:153747. https://doi.org/10. 1155/2014/153747. 
4. Schöneweck F, Schmitz RPH, Rißner F, et al. The epidemiology of bloodstream infections and antimicrobial susceptibility patterns in Thuringia, Germany: a five-year prospective, state-wide surveillance study (AlertsNet). Antimicrob Resist Infect Control. 2021;10:132. https://doi.org/10.1186/s13756-021-00997-6,
5. Clinical and Laboratory Standards Institute, Wayne, PA. Performance Standards for Antimicrobial Susceptibility Testing. Vol CLSI supplement M100, 33th ed, Clinical and Laboratory Standards Institute; Published 2023.
6. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589-96.
7. Diekema DJ, Hsueh P, Mendes RE, et al. 2019. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2019; 63. https://doi.org/10.1128/aac.00355-19.
8. Bạch Quốc Khánh, Bùi Thị Vân Nga, Nguyễn Hà Thanh, và cs. Nghiên cứu mô hình vi khuẩn - vi nấm gây nhiễm trùng huyết tại viện Huyết học - Truyền máu trung ương giai đoạn 2019 - 2021. Tạp chí Y học Việt Nam. 2024;535(1). https://doi.org/10.51298/vmj.v535 i1.8362.
9. Trương Thị Thu Hiền, Nguyễn Thị Mai Hương, Hoàng Mỹ Hạnh. Đánh giá tỷ lệ và mức độ kháng kháng sinh của các chủng vi khuẩn gây nhiễm khuẩn huyết tại Bệnh viện Bỏng quốc gia (01/2016 – 12/2021). Tạp chí Y học thảm họa & Bỏng. 2023;(1). https://doi.org/10.54804/yhthvb.1.2023.215.
10. Alvarez-Moreno CA, Morales-Lospez S, Rodriguez GJ, et al. The mortality attributable to Candidemia in C. auris is higher than that in other Candida species: Myth or Reality? J Fungi. 2023;9(4):430. https://doi.org/10.3390/jof9040430.
11. Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev. 2019;32(4):e00002-19.
12. Guedes M, Gathara D, López-Hernández I, et al. Differences in clinical outcomes of bloodstream infections caused by Klebsiella aerogenes, Klebsiella pneumoniae and Enterobacter cloacae: a multicentre cohort study. Ann Clin Microbiol Antimicrob. 2024;23(42). https://doi.org/10.11 86/s12941-024-00700-8.
13. Yahav D, Giske CG, Graamatniece A, et al. New β-lactam- β-lactamase inhibitor combinations. Clin Microbiol Rev. 2021. Doi.org/10.1128/CMR.00115-20.
14. Escola-Verge L, Larrosa N, Los-Arcos I, et al. Infections by OXA-48-like-producing Klebsiella pneumoniae non-co-producing extended-spectrun beta-lactamase: Can they be successfully treated with cephalosporins? J Global Antimicrob Resist. 2019. https://doi.org/10.1016/j.jgar.2019.02.016.
15. Spiliopoulou A, Giannopoulou I, Assimakopoulos SF, et al. Laboratory surveillance of Acinetobacter spp. bloodstream infections in a tertiary university hospital during a 9-year period. Trop Med Infect Dis. 2023;8(11):503. https://doi.org/10.3390/tropical med8110503.
16. Bộ y tế. Báo cáo giám sát kháng kháng sinh tại Việt Nam năm 2020. 2023.
17. Singh N, Poggensee L, Huang Y, et al. Antibiotic susceptibility patterns of viridans group streptococci isolates in Unitied States from 2010 to 2020. Antimicrob Resist. 2022;(4):3. doi.org/10.1093/jacamr/dlac049.
18. Delgado V, Marsan NA, Waha S, et al. 2023 ESC guidelines for the management of endocarditis: Developed by the task force on the management of endocarditis of the European society of cardiology (ESC) endorsed by the European Association for Cardi-Thoracis Surgery (EACTS) and the European Association of Nuclear Medicine (EANM). Eur Heart J. 2023;44(39):3948-4042. doi.org/10.1093/eurhe artj/ehad193.