Research on artificial intelligence (AI) and equilibrium function tests in the diagnosis of vestibular disease
Main Article Content
Abstract
Peripheral vestibular (PV) disease is a common cause of dizziness. However, an accurate diagnosis of this condition requires significant time for clinical examination, comprehensive assessment, and differentiation from non-peripheral vestibular diseases (non-PV). Non-PV diseases encompass a wide range of conditions, with hemodynamic orthostatic dizziness/vertigo (HO) being the most prevalent in our data. This study aims to evaluate the effectiveness of applying machine learning which is a branch of artificial intelligence (AI) to diagnose HO and classify peripheral vestibular (PV) and non-peripheral vestibular (non-PV) categories. Multi-class classification models were tested on a dataset of 1,009 patients (497 PV, 157 HO, and 355 non-PV) and achieved an overall accuracy of 72%, with F1 scores of 0.78 for PV, 0.64 for non-PV, and 0.71 for HO. Our results show that AI can become a useful tool in clinical practice, permitting time saving and improve the accuracy and efficiency of disease diagnosis.
Article Details
Keywords
Machine learning, neuro-otological examinations, peripheral vestibular disease, hemodynamic orthostatic dizziness/vertigo
References
2. Strupp M, Feil K, Zwergal A. Diagnose und Differenzialdiagnose von peripheren und zentralen Schwindelsyndromen [Diagnosis and Differential Diagnosis of Peripheral and Central Vestibular Disorders]. Laryngorhinootologie. 2021; 100(3): 176-183. doi:10.1055/a-1057-3239.
3. Mayo RC, Leung J. Artificial intelligence and deep learning - Radiology’s next frontier?. Clin Imaging. 2018; 49: 87-88. doi:10.1016/j.clinimag.2017.11.007.
4. Egert M, Steward JE, Sundaram CP. Machine Learning and Artificial Intelligence in Surgical Fields. Indian J Surg Oncol. 2020; 11(4): 573-577. doi:10.1007/s13193-020-01166-8.
5. Ahmadi SA, Vivar G, Navab N, et al. Modern machine-learning can support diagnostic differentiation of central and peripheral acute vestibular disorders. J Neurol. 2020; 267(Suppl 1): 143-152. doi:10.1007/s00415-020-09931-z.
6. Bisdorff A, Von Brevern M, Lempert T, Newman-Toker DE. Classification of vestibular symptoms: towards an international classification of vestibular disorders. J Vestib Res. 2009; 19(1-2): 1-13. doi:10.3233/VES-2009-0343.
7. Japan Society for Equilibrium Research. https:// www. memai. jp/ guide/.
8. Anh DT, Takakura H, Asai M, Ueda N, Shojaku H. Application of machine learning in the diagnosis of vestibular disease. Sci Rep. 2022; 12(1): 20805. Published 2022 Dec 2. doi:10.1038/s41598-022-24979-9.
9. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med. 2018; 284(6): 603-619. doi:10.1111/joim.12822.
10. F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Journal of Machine Learning Research. 2011; 12: 2825–2830.
11. Genuer, R., Poggi, J. M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010; 31: 2225–2236.
12. Masankaran, L., Viyanon, W. & Mahasittiwat, V. Classification of benign paroxysmal positioning vertigo types from Dizziness Handicap Inventory using machine learning techniques. International Conference on Intelligent Informatics and Biomedical Sciences, ICIIBMS. 2018; 209–214.
13. Priesol AJ, Cao M, Brodley CE, Lewis RF. Clinical vestibular testing assessed with machine-learning algorithms. JAMA Otolaryngol Head Neck Surg. 2015; 141(4): 364-372. doi:10.1001/jamaoto.2014.3519.