Evaluation of AI application in diabetic retinopathy screening at E Hospital in 2022 - 2024
Main Article Content
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes and the leading cause of blindness in the working-age population. Screening for DR is essential not only to reduce the burden of treatment but also to improve the quality of life for patients. However, the shortage of healthcare professionals specializing in retinal diseases, coupled with a large number of diabetic patients, poses a significant challenge. Therefore, this study aimed to evaluate the effectiveness of AI in DR screening applications. This cross-sectional study was conducted on 383 eyes diagnosed with diabetes at E Hospital from July 2022 to February 2024. Among the 383 eyes, the prevalence of DR, referable DR and vision-threatening DR were 39.7%; 25.9% and 14.9%, respectively. The sensitivity and specificity of AI were 80.3% and 96.1% for DR, 76.8% and 98.2% for referable DR, and 71.9% and 98.8% for vision-threatening DR, respectively.
Article Details
Keywords
Diabetes, diabetic retinopathy, AI
References
2. Data. Diabetes prevalence (% of population ages 20 to 79). Accessed May 11, 2022. https://data.worldbank.org/indicator/SH.STA.DIAB.ZS
3. Cai X, McGinnis JF. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives. J Diabetes Res. 2016;2016:3789217. doi:10.1155/2016/3789217
4. Federman JL, Gouras P, Schubert H, et al. Retina and Vitreous: Textbook of Ophthalmology. Vol 9.; 1994.
5. Wong TY, Sun J, Kawasaki R, et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology. 2018;125(10):1608-1622. doi:10.1016/j.ophtha.2018.04.007
6. Nguyễn Thị Lan Anh. Nghiên cứu các hình thái lâm sàng và một số yếu tố nguy cơ của bệnh võng mạc đái tháo đường tại Bệnh viện E Trung ương. Luận văn chuyên khoa cấp II. Trường Đại học Y Hà Nội; 2017.
7. Trần Thị Hải Linh. Phân loại giai đoạn bệnh võng mạc đái tháo đường dựa trên ảnh chụp đáy mắt kĩ thuật số tiêu chuẩn. Tạp chí Y học Việt Nam. 2022;514(1):200-203.
8. Lê Thị Hiền. Đánh giá đặc điểm lâm sàng bệnh võng mạc đái tháo đường tại Bệnh viện Đa khoa tỉnh Hòa Bình. Luận văn chuyên khoa cấp II. Trường Đại học Y Hà Nội; 2020.
9. Teo ZL, Tham YC, Yu M, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045. Ophthalmology. 2021;128(11):1580-1591. doi:10.1016/j.ophtha.2021.04.027
10. Raman R, Vasconcelos JC, Rajalakshmi R, et al. Prevalence of diabetic retinopathy in India stratified by known and undiagnosed diabetes, urban–rural locations, and socioeconomic indices: results from the SMART India population-based cross-sectional screening study. The Lancet Global Health. 2022;10(12):e1764-e1773. doi:10.1016/S2214-109X(22)00411-9
11. Vashist P, Gupta N, Singh S, et al. Role of early screening for diabetic retinopathy in patients with diabetes mellitus: An overview. Indian J Community Med. 2011;36(4):247. doi:10.4103/0970-0218.91324
12. Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning. Ophthalmology. 2017;124(7):962-969. doi:10.1016/j.ophtha.2017.02.008
13. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;316(22):2402. doi:10.1001/jama.2016.17216
14. Arenas-Cavalli JT, Abarca I, Rojas-Contreras M, et al. Clinical validation of an artificial intelligence-based diabetic retinopathy screening tool for a national health system. Eye. 2022;36(1):78-85. doi:10.1038/s41433-020-01366-0
15. Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye. 2018;32(6):1138-1144. doi:10.1038/s41433-018-0064-9
16. Scanlon PH, Foy C, Malhotra R, et al. The Influence of Age, Duration of Diabetes, Cataract, and Pupil Size on Image Quality in Digital Photographic Retinal Screening. Diabetes Care. 2005;28(10):2448-2453. doi:10.2337/diacare.28.10.2448
17. Abràmoff MD, Lou Y, Erginay A, et al. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Invest Ophthalmol Vis Sci. 2016;57(13):5200. doi:10.1167/iovs.16-19964
18. Ting DSW, Cheung CYL, Lim G, et al. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA. 2017;318(22):2211. doi:10.1001/jama.2017.18152
19. Teo ZL, Tham YC, Yu M, et al. Do we have enough ophthalmologists to manage vision-threatening diabetic retinopathy? A global perspective. Eye. 2020;34(7):1255-1261. doi:10.1038/s41433-020-0776-5
20. Ting DSW, Cheung CY, Nguyen Q, et al. Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study. npj Digit Med. 2019;2(1):24. doi:10.1038/s41746-019-0097-x