57. Epidemiological characteristics of tick-borne pathogens in Northern Vietnam, 2022 - 2024
Main Article Content
Abstract
Tick-borne pathogens pose a significant threat to public health worldwide. This study aimed to determine the prevalence of Anaplasma spp., Babesia spp., and Theileria spp. in ticks collected from northern Vietnam. A total of 2,457 ticks were analyzed and identified using Nested PCR. The results indicated significant variations in prevalence across provinces and seasons. The overall infection rates were 7.77% for Anaplasma spp., Babesia spp. (3.58%) and Theileria spp. (5.13%). The highest prevalence of Anaplasma (10.4%) and Babesia (4.73%) was recorded in Ha Noi, whereas Theileria exhibited the highest prevalence in Thai Nguyen (6.46%). Summer showed the highest infection rates for all three pathogens, with Anaplasma, Babesia, and Theileria reaching 14.67%, 5.79%, and 8.3%, respectively, while winter recorded the lowest prevalence. These seasonal differences were statistically significant (p < 0.01). R. microplus and R. sanguineus were identified as the major vector species in the northern Vietnam.
Article Details
Keywords
Anaplasma spp., Babesia spp., Theileria spp., ticks
References
2. Karshima SN, MI Ahmed, CA Kogi, et al. Anaplasma phagocytophilum infection rates in questing and host-attached ticks: a global systematic review and meta-analysis. Acta Trop, 2022. 228: p. 106299. DOI: 10.1016/j.actatropica.2021.106299.
3. Mans BJ, R Pienaar and AA Latif. A review of Theileria diagnostics and epidemiology. Int J Parasitol Parasites Wildl, 2015. 4(1): p. 104-18. DOI: 10.1016/j.ijppaw.2014.12.006.
4. Jongejan F and G Uilenberg. The global importance of ticks. Parasitology, 2004. 129 Suppl: p. S3-14. DOI: 10.1017/s0031182004005967.
5. Bakken JS and JS Dumler. Human granulocytic anaplasmosis. Infect Dis Clin North Am, 2015. 29(2): p. 341-55. DOI: 10.1016/j.idc.2015.02.007.
6. Hornok S, R Farkas, NN Duong, et al. A morpho-phylogenetic update on ixodid ticks infesting cattle and buffalos in Vietnam, with three new species to the fauna and a checklist of all species indigenous to the country. Parasit Vectors, 2024. 17(1): p. 319. DOI: 10.1186/s13071-024-06384-5.
7. Nguyen VL, V Colella, R Iatta, et al. Ticks and associated pathogens from dogs in northern Vietnam. Parasitol Res, 2019. 118(1): p. 139-142. DOI: 10.1007/s00436-018-6138-6.
8. Daniel WW and CL Cross. Biostatistics: a foundation for analysis in the health sciences. 2018: John Wiley & Sons.
9. Khukhuu A, DT Lan, PT Long, et al. Molecular epidemiological survey of Theileria orientalis in Thua Thien Hue Province, Vietnam. J Vet Med Sci, 2011. 73(5): p. 701-5.
10. Huynh LN, AZ Diarra, QL Pham, et al. Morphological, molecular and MALDI-TOF MS identification of ticks and tick-associated pathogens in Vietnam. PLoS Negl Trop Dis, 2021. 15(9): p. e0009813. DOI: 10.1371/journal.pntd.0009813.
11. Phan Trọng Cung, Đ.V.T.v.c. Bộ Ve Vét - Acarina. Động vật chí Việt Nam. 2001, Hà Nội: NXB Khoa học và Kỹ thuật. 405 trang.
12. Hosseini-Vasoukolaei N, MA Oshaghi, P. Shayan, et al. Anaplasma Infection in Ticks, Livestock and Human in Ghaemshahr, Mazandaran Province, Iran. J Arthropod Borne Dis, 2014. 8(2): p. 204-11. PMCID: PMC4478432.
13. Hamšíková Z, M Kazimírová, D Haruštiaková, et al. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasit Vectors, 2016. 9(1): p. 292. DOI: 10.1186/s13071-016-1560-z
14. Mohammadi SM, B Esmaeilnejad and G Jalilzadeh-Amin. Molecular detection, infection rate and vectors of Theileria lestoquardi in goats from West Azerbaijan province, Iran. Vet Res Forum, 2017. 8(2): p. 139-144. PMCID: PMC5524552
15. Schnittger L, AE Rodriguez, M Florin-Christensen, et al. Babesia: a world emerging. Infect Genet Evol, 2012. 12(8): p. 1788-809. DOI: 10.1016/j.meegid.2012.07.004
16. de la Fuente J, A Estrada-Pena, JM Venzal, et al. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci, 2008. 13: p. 6938-46. DOI: 10.2741/3200
17. Estrada-Peña A, J de la Fuente and A. Cabezas-Cruz. Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. Front Cell Infect Microbiol, 2017. 7: p. 234. DOI: 10.3389/fcimb.2017.00234.
18. Medlock JM, KM Hansford, A Bormane, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors, 2013. 6: p. 1. DOI: 10.1186/1756-3305-6-1.
19. Stuen S, EG Granquist and C Silaghi. Anaplasma phagocytophilum-a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol, 2013. 3: p. 31. DOI: 10.3389/fcimb.2013.00031.
20. Dantas-Torres F. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect. Int J Parasitol Parasites Wildl, 2015. 4(3): p. 452-61. DOI: 10.1016/j.ijppaw.2015.07.001.
21. Zhang YK, XY Zhang and JZ Liu. Ticks (Acari: Ixodoidea) in China: Geographical distribution, host diversity, and specificity. Arch Insect Biochem Physiol, 2019. 102(3): p. e21544. DOI: 10.1002/arch.21544.
22. Gubbels JM, AP de Vos, M van der Weide, et al. Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. J Clin Microbiol, 1999. 37(6): p. 1782-9. DOI: 10.1128/JCM.37.6.1782-1789.1999.
23. Parola P, CD. Paddock and D Raoult. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev, 2005. 18(4): p. 719-56. DOI: 10.1128/CMR.18.4.719-756.2005.