57. Epidemiological characteristics of tick-borne pathogens in Northern Vietnam, 2022 - 2024

Pham Ngoc Duan, Duong Nhu Ngoc, Dao Thi Ha Thanh, Pham Ngoc Minh, Nguyen Ngoc San, Nguyen Cong Trong

Main Article Content

Abstract

Tick-borne pathogens pose a significant threat to public health worldwide. This study aimed to determine the prevalence of Anaplasma spp., Babesia spp., and Theileria spp. in ticks collected from northern Vietnam. A total of 2,457 ticks were analyzed and identified using Nested PCR. The results indicated significant variations in prevalence across provinces and seasons. The overall infection rates were 7.77% for Anaplasma spp., Babesia spp. (3.58%) and Theileria spp. (5.13%). The highest prevalence of Anaplasma (10.4%) and Babesia (4.73%) was recorded in Ha Noi, whereas Theileria exhibited the highest prevalence in Thai Nguyen (6.46%). Summer showed the highest infection rates for all three pathogens, with Anaplasma, Babesia, and Theileria reaching 14.67%, 5.79%, and 8.3%, respectively, while winter recorded the lowest prevalence. These seasonal differences were statistically significant (p < 0.01). R. microplus and R. sanguineus were identified as the major vector species in the northern Vietnam.

Article Details

References

1. Kumar A, J O’Bryan and PJ Krause. The Global Emergence of Human Babesiosis. Pathogens, 2021. 10(11). DOI: 10.3390/pathogens10111447.
2. Karshima SN, MI Ahmed, CA Kogi, et al. Anaplasma phagocytophilum infection rates in questing and host-attached ticks: a global systematic review and meta-analysis. Acta Trop, 2022. 228: p. 106299. DOI: 10.1016/j.actatropica.2021.106299.
3. Mans BJ, R Pienaar and AA Latif. A review of Theileria diagnostics and epidemiology. Int J Parasitol Parasites Wildl, 2015. 4(1): p. 104-18. DOI: 10.1016/j.ijppaw.2014.12.006.
4. Jongejan F and G Uilenberg. The global importance of ticks. Parasitology, 2004. 129 Suppl: p. S3-14. DOI: 10.1017/s0031182004005967.
5. Bakken JS and JS Dumler. Human granulocytic anaplasmosis. Infect Dis Clin North Am, 2015. 29(2): p. 341-55. DOI: 10.1016/j.idc.2015.02.007.
6. Hornok S, R Farkas, NN Duong, et al. A morpho-phylogenetic update on ixodid ticks infesting cattle and buffalos in Vietnam, with three new species to the fauna and a checklist of all species indigenous to the country. Parasit Vectors, 2024. 17(1): p. 319. DOI: 10.1186/s13071-024-06384-5.
7. Nguyen VL, V Colella, R Iatta, et al. Ticks and associated pathogens from dogs in northern Vietnam. Parasitol Res, 2019. 118(1): p. 139-142. DOI: 10.1007/s00436-018-6138-6.
8. Daniel WW and CL Cross. Biostatistics: a foundation for analysis in the health sciences. 2018: John Wiley & Sons.
9. Khukhuu A, DT Lan, PT Long, et al. Molecular epidemiological survey of Theileria orientalis in Thua Thien Hue Province, Vietnam. J Vet Med Sci, 2011. 73(5): p. 701-5.
10. Huynh LN, AZ Diarra, QL Pham, et al. Morphological, molecular and MALDI-TOF MS identification of ticks and tick-associated pathogens in Vietnam. PLoS Negl Trop Dis, 2021. 15(9): p. e0009813. DOI: 10.1371/journal.pntd.0009813.
11. Phan Trọng Cung, Đ.V.T.v.c. Bộ Ve Vét - Acarina. Động vật chí Việt Nam. 2001, Hà Nội: NXB Khoa học và Kỹ thuật. 405 trang.
12. Hosseini-Vasoukolaei N, MA Oshaghi, P. Shayan, et al. Anaplasma Infection in Ticks, Livestock and Human in Ghaemshahr, Mazandaran Province, Iran. J Arthropod Borne Dis, 2014. 8(2): p. 204-11. PMCID: PMC4478432.
13. Hamšíková Z, M Kazimírová, D Haruštiaková, et al. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasit Vectors, 2016. 9(1): p. 292. DOI: 10.1186/s13071-016-1560-z
14. Mohammadi SM, B Esmaeilnejad and G Jalilzadeh-Amin. Molecular detection, infection rate and vectors of Theileria lestoquardi in goats from West Azerbaijan province, Iran. Vet Res Forum, 2017. 8(2): p. 139-144. PMCID: PMC5524552
15. Schnittger L, AE Rodriguez, M Florin-Christensen, et al. Babesia: a world emerging. Infect Genet Evol, 2012. 12(8): p. 1788-809. DOI: 10.1016/j.meegid.2012.07.004
16. de la Fuente J, A Estrada-Pena, JM Venzal, et al. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci, 2008. 13: p. 6938-46. DOI: 10.2741/3200
17. Estrada-Peña A, J de la Fuente and A. Cabezas-Cruz. Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. Front Cell Infect Microbiol, 2017. 7: p. 234. DOI: 10.3389/fcimb.2017.00234.
18. Medlock JM, KM Hansford, A Bormane, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors, 2013. 6: p. 1. DOI: 10.1186/1756-3305-6-1.
19. Stuen S, EG Granquist and C Silaghi. Anaplasma phagocytophilum-a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol, 2013. 3: p. 31. DOI: 10.3389/fcimb.2013.00031.
20. Dantas-Torres F. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect. Int J Parasitol Parasites Wildl, 2015. 4(3): p. 452-61. DOI: 10.1016/j.ijppaw.2015.07.001.
21. Zhang YK, XY Zhang and JZ Liu. Ticks (Acari: Ixodoidea) in China: Geographical distribution, host diversity, and specificity. Arch Insect Biochem Physiol, 2019. 102(3): p. e21544. DOI: 10.1002/arch.21544.
22. Gubbels JM, AP de Vos, M van der Weide, et al. Simultaneous detection of bovine Theileria and Babesia species by reverse line blot hybridization. J Clin Microbiol, 1999. 37(6): p. 1782-9. DOI: 10.1128/JCM.37.6.1782-1789.1999.
23. Parola P, CD. Paddock and D Raoult. Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin Microbiol Rev, 2005. 18(4): p. 719-56. DOI: 10.1128/CMR.18.4.719-756.2005.