40. Optimizing motor recovery in patients with severe traumatic brain injury following decompressive craniectomy

Le Thi My Tien, Ngo Manh Hung, Phan Minh Tuan, Truong Le Buu Minh, Phan Minh Hoang, Phung Quoc Thai, Nguyen Thi Kim Lien

Main Article Content

Abstract

The study described motor function in patients with severe traumatic brain injury undergoing decompressive craniectomy, assessing outcomes at 1 month and 3 months after a neuroplasticity-based intervention program. Among 93 participants, 57 % achieved good motor recovery (ERBI > 30) by month 3. Patients with poor recovery (ERBI ≤ 30) experienced higher complication rates-such as pneumonia, autonomic dysfunction, and secondary brain injury-and had a longer average hospital stay (55 days versus 35 days in the ERBI > 30 group). Independent sitting increased only modestly, from 0% to 12%, while standing and higher-level skills (walking, stair climbing) remained below 1%. These findings provide preliminary evidence that an early, high-intensity, multidisciplinary rehabilitation program can effectively improve motor function in severe TBI patients following decompressive craniectomy.

Article Details

References

1. Algethami H. Baseline Predictors of Survival, Neurological Recovery, Cognitive Function, Neuropsychiatric Outcomes, and Return to Work in Patients after a Severe Traumatic Brain Injury: an Updated Review. Mater Sociomed. 2020; 32(2): 148. doi:10.5455/MSM.2020.32.148-157.
2. Catherine Judith Hosanna, Samuel Kamlesh Kumar S, Aruna R, Ann Patricia Catherine S, Rita Janet Surekha S, Elango A. Rehabilitation Outcomes of Persons with Severe Traumatic Brain Injury. The Indian Journal of Occupational Therapy. 2021; 53(1): 31-38. doi: 10.4103/IJOTH.IJOTH_45_21.
3. Pretz C, Kowalski RG, Cuthbert JP, et al. Return to Productivity Projections for Individuals with Moderate to Severe TBI following Inpatient Rehabilitation: A NIDILRR TBIMS and CDC Interagency Collaboration. Journal of Head Trauma Rehabilitation. 2020; 35(2): 140-151. doi:10.1097/HTR.0000000000000506.
4. Marklund N, Tenovuo O. Pathophysiology of Severe Traumatic Brain Injury. Management of Severe Traumatic Brain Injury. Published online 2020: 35-50. doi:10.1007/978-3-030-39383-0_6.
5. Wieloch T, Nikolich K. Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol. 2006; 16(3): 258-264. doi:10.1016/j.conb.2006.05.011.
6. Page S, Levine P. Forced use after TBI: promoting plasticity and function through practice. Brain Inj. 2003; 17(8): 675-684. doi:10.1080/0269905031000107160.
7. Andelic N, Sigurdardottir S, Tenovuo O. Rehabilitation After Severe TBI. Management of Severe Traumatic Brain Injury. Published online 2020: 547-556. doi:10.1007/978-3-030-39383-0_75.
8. Lima Bartolo M, Bargellesi S, Alberto Castioni C. Early Rehabilitation for Severe Acquired Brain Injury in Intensive Care Unit: Multicenter Observational Study. 2016. https://www.researchgate.net/publication/295402944.
9. Bartolo M, Bargellesi S, Castioni CA, et al. Mobilization in early rehabilitation in intensive care unit patients with severe acquired brain injury: An observational study. J Rehabil Med. 2017; 49(9): 715-722. doi:10.2340/16501977-2269.
10. Driessen DMF, Utens CMA, Ribbers PGM, van Erp WS, Heijenbrok-Kal MH. Short-term outcomes of early intensive neurorehabilitation for prolonged disorders of consciousness: A prospective cohort study. Ann Phys Rehabil Med. 2024; 67(5): 101838. doi:10.1016/J.REHAB.2024.101838.
11. Pellicciari L, Lucca LF, de Tanti A, et al. The structure of the Early Rehabilitation Barthel Index (ERBI) should be modified: evidence from a Rasch analysis study. Eur J Phys Rehabil Med. 2023; 59(4): 458. doi:10.23736/S1973-9087.23.07908-X.
12. Swaine BR, Sullivan SJ. Reliability of early motor function testing in persons following severe traumatic brain injury. Brain Inj. 1996; 10(4): 263-276. doi:10.1080/026990596124449.
13. Boltzmann, M., Schmidt, S.B., Gutenbrunner, C. et al. The influence of the CRS-R score on functional outcome in patients with severe brain injury receiving early rehabilitation. BMC Neurol; 21, 44 (2021). https://doi.org/10.1186/s12883-021-02063-5.
14. Gesch JM, et al. Inter- and intra-tester reliability of the acute brain injury physiotherapy assessment (ABIPA) in patients with acquired brain injury. Brain Inj. 2017; 31(13-14): 1799-1806. doi:10.1080/02699052.2017.1346298.
15. Eghbali M, Khankeh H, Ebadi A. The importance of early rehabilitation in traumatic brain injury. Nursing Practice Today. 2020; 7(2): 84-86. doi:10.18502/npt.v7i2.2729.
16. Steiner E, Murg-Argeny M, Steltzer H. The severe traumatic brain injury in Austria: Early rehabilitative treatment and outcome. J Trauma Manag Outcomes. 2016; 10(1). doi:10.1186/s13032-016-0035-8.
17. Keleman N, Krasnik R, Mikov A, Dragičević-Cvjetković D. Outcome of early rehabilitation of patients with traumatic brain injury during COVID-19 pandemic in The Republic of Srpska, Bosnia and Herzegovina. Front Neurol. 2023; 14. doi:10.3389/fneur.2023.1269564.
18. Nguyễn Thị Mỹ Linh và cộng sự. Đánh giá hiệu quả phục hồi chức năng sớm trên bệnh nhân chấn thương sọ não nặng. Tạp chí Y học Việt Nam. 2023; 531(1). doi:10.51298/VMJ.V531I1.6906.
19. Bartolo M, Bargellesi S, Castioni CA, et al. Early rehabilitation for severe acquired brain injury in intensive care unit: multicenter observational study. Eur J Phys Rehabil Med. 2016; 52(1): 90-100.