Method comparison of pediatric iron biomarkers: Implications for clinical interpretation across analytical platforms

Tran Minh Dien, Ho Thi Thu, Ngoc Thu Thao, Phan Huu Phuc, Le Thi Ngoc Lan, Tze Ping Loh, Tran Thi Chi Mai

Main Article Content

Abstract

Iron deficiency is the most prevalent nutritional disorder in children and is typically assessed using serum iron, transferrin, and ferritin levels. However, variations in analytical methods between testing platforms may influence diagnostic accuracy and clinical decisions. This cross-sectional method comparison study evaluated 137 blinded pediatric serum samples collected from a tertiary children’s hospital in Vietnam. Serum iron was measured by a colorimetric method, transferrin by immunoturbidimetry, and ferritin by immunoassay, using two different platforms: Cobas Pro (Roche Diagnostics) and Atellica Solution (Siemens Healthineers). Analytical precision and trueness were assessed in accordance with CLSI EP15-A3 guidelines. Agreement between platforms was evaluated using Passing-Bablok regression and Bland-Altman analysis. Results showed systematic bias across all analytes, with the Atellica platform yielding consistently lower values. Specifically, the regression equations were Siemens = 0.96 (Roche) – 0.1 µmol/L for serum iron, Siemens = 0.93 (Roche) + 1.0 mg/dL for transferrin, and Siemens = 0.723 (Roche) – 1.7 µg/L for ferritin. Mean differences were -0.7 µmol/L, -15.6 mg/dL, and -137 µg/L, respectively. These findings indicate notable discrepancies between the platforms, underscoring the necessity for platform-specific reference intervals and the importance of harmonizing methods. In settings where harmonization is not feasible, regression-based adjustments may facilitate reference interval transference, especially in low-resource environments.

Article Details

References

1. Balarajan Y, Ramakrishnan U, Ozaltin E, et al. Anaemia in low-income and middle-income countries. Lancet. 2011;378(9809):2123-2135. doi:10.1016/S0140-6736(10)62304-5
2. Yousuf R, Akter S, Wasek SM, et al. Thalassemia: A Review of the Challenges to the Families and Caregivers. Cureus. 2022;14(12):e32491. doi:10.7759/cureus.32491
3. Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica. 2020;105(2):260-272. doi:10.3324/haematol.2019.232124
4. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011-1023. doi:10.1056/NEJMra041809
5. Lopez A, Cacoub P, Macdougall IC, et al. Iron deficiency anaemia. Lancet. 2016;387(10021):907-916. doi:10.1016/S0140-6736(15)60865-0
6. Pasricha SR, Drakesmith H, Black J, et al. Control of iron deficiency anemia in low- and middle-income countries. Blood. 2013;121(14):2607-2617. doi:10.1182/blood-2012-09-453522
7. Suchdev PS, Namaste SM, Aaron GJ, et al. Overview of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) Project. Am J Clin Nutr. 2016;104(3 Suppl):349S-356S. doi:10.3945/ajcn.115.010215
8. Oh HL, Lee JA, Kim DH, et al. Reference values for serum ferritin and percentage of transferrin saturation in Korean children and adolescents. Blood Res. 2018;53(1):18-24. doi:10.5045/br.2018.53.1.18
9. Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. Blood. 2019;133(1):51-58. doi:10.1182/blood-2018-07-815928
10. Pfeiffer CM, Looker AC. Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges. Am J Clin Nutr. 2017;106(Suppl 6):1606S-1614S. doi:10.3945/ajcn.117.155887
11. World Health Organization. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Geneva: World Health Organization; 2020.
12. Garcia-Casal MN, Peña-Rosas JP, Pasricha SR. Rethinking ferritin cutoffs for iron deficiency and overload. PLoS One. 2018;13(2):e0203286. doi:10.1371/journal.pone.0203286
13. Clinical and Laboratory Standards Institute. User Verification of Precision and Estimation of Bias (EP15-A3). Wayne, PA: CLSI; 2014.
14. Clinical and Laboratory Standards Institute. Measurement Procedure Comparison and Bias Estimation Using Patient Samples (EP09-A3). Wayne, PA: CLSI; 2018.
15. Parkin P, Hamid J, Borkhoff C, et al. Laboratory reference intervals in the assessment of iron status in young children. BMJ Paediatr Open. 2017;1(1):e000074. doi:10.1136/bmjpo-2017-000074
16. Stierlin N, Hemmerle A, Jung K, et al. Comparison of two different technologies measuring the same analytes in view of the In Vitro Diagnostic Regulation (IVDR). J Lab Med. 2025;49:14-20. doi:10.1515/labmed-2024-0052
17. Dahman LSB, Sumaily KM, Sabi EM, et al. A Comparative Study for Measuring Serum Ferritin Levels with Three Different Laboratory Methods: ELISA vs Cobas e411 and Integra 400. Diagnostics (Basel). 2022;12(2):320. doi:10.3390/diagnostics12020320
18. Rohner F, Zeder C, Zimmermann MB, et al. Comparison of manual and automated ELISA methods for serum ferritin analysis. J Clin Lab Anal. 2005;19(5):196-198. doi:10.1002/jcla.20077
19. Majoni S, Nelson J, Graham J, et al. Comparison of two ferritin assay platforms in patients with chronic kidney disease. BMC Nephrol. 2023;24(1):145. doi:10.1186/s12882-023-03255-6
20. Taylor MD, Allada V, Moritz ML, et al. Use of C-Reactive Protein and Ferritin Biomarkers in Daily Pediatric Practice. Pediatr Rev. 2020;41(4):172-183. doi:10.1542/pir.2018-0101