Analgesic effect of herbal remedy modified BaiDuSan in experimental animals

Dang Hong Anh, Do Linh Quyen

Main Article Content

Abstract

Modified BaiDuSan is developed based on the traditional formula BaiDuSan, with the addition of four medicinal herbs: Caulis Tinospora sinensis Merr., Rhizoma Reynoutriae japonicae, Folium Ardisiae, Os Sepiae. To evaluate its analgesic effect, several experimental pain models were employed, including the hot plate test and the acetic acid-induced writhing test in Swiss mice, and the Randall–Selitto test in Wistar rats with induced inflammatory pain. The results showed that at both doses of 36 g/kg and 72 g/kg, Modified BaiDuSan significantly reduced the total number of abdominal writhes induced by acetic acid, but did not show analgesic activity in the hot plate model. At doses of 21 g/kg and 42 g/kg, Modified BaiDuSan significantly increased the pain threshold in inflamed paws. These findings suggest that the Modified BaiDuSan exerts peripheral analgesic effects but does not affect central pain mechanisms.

Article Details

References

1. Hall JE. In: Guyton and Hall Textbook of Medical Physiology, Jordanian Edition E-Book. Elsevier Health Sciences; 2016:1170.
2. Moriarty O, Ruane N, O’Gorman D, et al. Cognitive Impairment in Patients with Chronic Neuropathic or Radicular Pain: An Interaction of Pain and Age. Front Behav Neurosci. 2017;11. doi:10.3389/fnbeh.2017.00100
3. Günther T, Dasgupta P, Mann A, et al. Targeting multiple opioid receptors – improved analgesics with reduced side effects? British Journal of Pharmacology. 2018;175(14):2857-2868. doi:10.1111/bph.13809
4. Almohammed BA. Frequency and Knowledge of Analgesics Self-Use and Their Adverse Effects in the Eastern Province of Saudi Arabia. Cureus. Published online January 4, 2023. doi:10.7759/cureus.33344
5. Nguyễn Nhược Kim. Chương 2: Bài thuốc giải biểu. Phương Tễ Học. Nhà xuất bản Y học; 2009:30-31.
6. Okuyama E, Nishimura S, Ohmori S, et al. Analgesic Component of Notopterygium incisum TING. Chemical & Pharmaceutical Bulletin. 1993;41(5):926-929. doi:10.1248/cpb.41.926
7. Chen YF, Tsai HY, Wu TS. Anti-Inflammatory and Analgesic Activities from Roots of Angelica pubescens. Planta Medica. 2007;61:2-8. doi:10.1055/s-2006-957987
8. Ahmadimoghaddam D, Zarei M, Mohammadi S, et al. Bupleurum falcatum L. alleviates nociceptive and neuropathic pain: Potential mechanisms of action. Journal of Ethnopharmacology. 2021;273:113990. doi:10.1016/j.jep.2021.113990
9. Baker AK, Hoffmann VLH, Meert TF. Dextromethorphan and ketamine potentiate the antinociceptive effects of μ- but not δ- or κ-opioid agonists in a mouse model of acute pain. Pharmacology Biochemistry and Behavior. 2002;74(1):73-86. doi:10.1016/S0091-3057(02)00961-9
10. Gunn A, Bobeck EN, Weber C, et al. The Influence of Non-Nociceptive Factors on Hot-Plate Latency in Rats. The Journal of Pain. 2011;12(2):222-227. doi:10.1016/j.jpain.2010.06.011
11. KOSTER R. Acetic acid for analgesics screening. Fed Proc. 1959;18:412-417.
12. H.Gerhard Vogel. Drug Discovery and Evaluation: Pharmacological Assays. 3rd ed. Springer; 2008.
13. Fayez N, Khalil W, Abdel-Sattar E, et al. In vitro and in vivo assessment of the anti-inflammatory activity of olive leaf extract in rats. Inflammopharmacol. 2023;31(3):1529-1538. doi:10.1007/s10787-023-01208-x
14. Đỗ Trung Đàm. Phương pháp dược lý nghiên cứu tác dụng chống viêm. Thuốc Giảm Đau Chống Viêm và Các Phương Pháp Nghiên Cứu Tác Dụng Dược Lý. Nhà xuất bản Y học; 2017:427-526.
15. Franz Jakob Hock. Chapter H: Analgesic, anti-inflammatory, and anti-pyretic activity. In: Drug Discovery and Evaluation: Pharmacological Assays. 4th ed. Springer; 2016:983-1116.
16. Inaltekin A, Kivrak Y. Evaluation of the effect of vortioxetine on pain threshold by hot-plate test in mice. Archives of Neuropsychiatry. Published online 2021. doi:10.29399/npa.27462
17. Barrot M. Tests and models of nociception and pain in rodents. Neuroscience. 2012;211:39-50. doi:10.1016/j.neuroscience.2011.12.041
18. Raffa RB, Friderichs E, Reimann W, et al. Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an “atypical” opioid analgesic. J Pharmacol Exp Ther. 1992;260(1):275-285.
19. Pavao-de-Souza GF, Zarpelon AC, Tedeschi GC, et al. Acetic acid- and phenyl-p-benzoquinone-induced overt pain-like behavior depends on spinal activation of MAP kinases, PI3K and microglia in mice. Pharmacology Biochemistry and Behavior. 2012;101(3):320-328. doi:10.1016/j.pbb.2012.01.018
20. Satyanarayana PSV, Jain NK, Singh A, et al. Isobolographic analysis of interaction between cyclooxygenase inhibitors and tramadol in acetic acid-induced writhing in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2004;28(4):641-649. doi:10.1016/j.pnpbp.2004.01.015
21. Garcı́a MD, Fernández MA, Alvarez A, et al. Antinociceptive and anti-inflammatory effect of the aqueous extract from leaves of Pimenta racemosa var. ozua (Mirtaceae). Journal of Ethnopharmacology. 2004;91(1):69-73. doi:10.1016/j.jep.2003.11.018
22. Ayanaw MA, Yesuf JS, Birru EM. Evaluation of Analgesic and Anti-inflammatory Activities of Methanolic Leaf and Root Extracts of Gomphocarpus purpurascens A. Rich (Asclepiadaceae) in Mice. J Exp Pharmacol. 2023;15:1-11. doi:10.2147/JEP.S361194
23. Deuis JR, Dvorakova LS, Vetter I. Methods Used to Evaluate Pain Behaviors in Rodents. Front Mol Neurosci. 2017;10:284. doi:10.3389/fnmol.2017.00284
24. Kayser V. Randall-Selitto Paw Pressure Test. In: Schmidt RF, Willis WD, eds. Encyclopedia of Pain. Springer; 2007:2091-2093. doi:10.1007/978-3-540-29805-2_3726
25. Đặng Hồng Anh, Đỗ Linh Quyên, Vũ Đức Lợi. Tác dụng chống viêm của bài thuốc bại độc tán gia vị trên động vật thực nghiệm. Tạp chí Nghiên cứu Y học. 2024;183(10):320-330. doi:10.52852/tcncyh.v183i10.2770
26. Lan Y, Zheng, Yu-Kun, et al. Polygonum Cuspidatum Alcohol Extract Exerts Analgesic Effects via the MAPK/ERK Signaling Pathway. Drug Design, Development and Therapy. 2023;17:3151-3167. doi:10.2147/DDDT.S4200 02