Application of artificial intelligence in predicting the nutritional status of Vietnamese youth

Bui Hong Ngoc, Le Minh Giang, Le Thi Thanh Xuan, Le Thi Huong, Bùi Anh Phong, Nguyen Thi Huong Giang, Nguyen Thi Thu Lieu, Nguyen Thanh Tung

Main Article Content

Abstract

This study aims to develop and evaluate an artificial intelligence (AI) model for predicting the nutritional status of Vietnamese youth based on large-scale data. The dataset was derived from a nationwide survey involving 12,042 university students. Advanced machine learning algorithms, including XGBoost, LightGBM, and CatBoost, were applied to classify nutritional status using the Body Mass Index (BMI). Among these, the XGBoost model achieved the highest performance, with an accuracy of 75.3% and an F1-score of 73.75%. Key predictive variables included waist circumference, hip circumference, sleep duration, gender, late-night eating habits, fast food consumption, and daily dietary intake (energy, protein, fat, and micronutrients). The findings highlight the potential of AI in public health data analysis, particularly in identifying nutritional risks and generating personalized recommendations for diet and physical activity among youth. This research contributes to the development of precision nutrition approaches and supports the broader integration of digital health technologies in Vietnam’s public health strategies.

Article Details

References

1. Avram C, Nyulas V, Onisor D, et al. Food Behavior and Lifestyle Among Students: The Influence of the University Environment. Nutrients. 2025;17(1):12. doi:10.3390/nu17010012
2. Vũ Thị Nhung. Tình trạng dinh dưỡng và một số chỉ số sinh học của sinh viên đại học chính quy năm thứ 2 trường đại học điều dưỡng nam định. Tạp chí Y học Việt Nam. 2022;516(1). doi:10.51298/vmj.v516i1.2963
3. Nguyễn Thành Chung, Trần Ngọc Anh, Nguyễn Diệp Anh, và cs. Tình trạng dinh dưỡng của sinh viên năm nhất Phân hiệu Trường Đại học Y Hà Nội tại Thanh Hóa năm học 2023 - 2024. Tạp chí Khoa học Điều dưỡng. 2024;7(5):148-153. doi:10.54436/jns.2024.05.871
4. Nguyễn Trung Hiếu, Trần Khánh Thu, Vũ Duy Tùng. Một số chỉ số nhân trắc dinh dưỡng của sinh viên chính quy năm thứ nhất ngành y khoa và dược học trường đại học y dược thái bình năm 2023. Tạp chí Dinh dưỡng và Thực phẩm. 2023;19(4+5):54-61. doi:10.56283/1859-0381/614
5. Mousavi S, Bieber K, Zirpel H, et al. Large-scale analysis highlights obesity as a risk factor for chronic, non-communicable inflammatory diseases. Front Endocrinol. 2025;16:1516433. doi:10.3389/fendo.2025.1516433
6. Alhumaidi NH, Dermawan D, Kamaruzaman HF, et al. The Use of Machine Learning for Analyzing Real-World Data in Disease Prediction and Management: Systematic Review. JMIR Med Inform. 2025;13(1):e68898. doi:10.2196/68898
7. Liu H, Wu YC, Chau PH, et al. Prediction of adolescent weight status by machine learning: a population-based study. BMC Public Health. 2024;24(1):1351. doi:10.1186/s12889-024-18830-1
8. Yusamran N, Chaitokkia S, Yusamran M. A Study of Factors Associated with Nutritional Status of Loei Rajabhat University Students by Machine Learning. J Vongchavalitkul Univ. 2024;37(2):96-113.
9. Taheri S, Lin L, Austin D, et al. Short Sleep Duration Is Associated with Reduced Leptin, Elevated Ghrelin, and Increased Body Mass Index. PLOS Med. 2004;1(3):e62. doi:10.1371/journal.pmed.0010062
10. Yoshida J, Eguchi E, Nagaoka K, et al. Association of night eating habits with metabolic syndrome and its components: a longitudinal study. BMC Public Health. 2018;18:1366. doi:10.1186/s12889-018-6262-3
11. Thorp AA, Owen N, Neuhaus M, et al. Sedentary Behaviors and Subsequent Health Outcomes in Adults: A Systematic Review of Longitudinal Studies, 1996–2011. Am J Prev Med. 2011;41(2):207-215. doi:10.1016/j.amepre.2011.05.004
12. Lopez-Lopez JP, Cohen DD, Ney-Salazar D, et al. The prediction of Metabolic Syndrome alterations is improved by combining waist circumference and handgrip strength measurements compared to either alone. Cardiovasc Diabetol. 2021;20(1):68. doi:10.1186/s12933-021-01256-z