Association single nucleotide polymorphism rs36084323 in PDCD-1 gene in hepatitis B patients
Main Article Content
Abstract
The single nucleotide polymorphisms (SNPs) of the PDCD-1 gene are thought to be involved in transcriptional changes of PD-1, which is an important ligand involved in T-cell depletion and therefore may play a role important role in the pathophysiology of chronic Hepatitis B. We designed a cross sectional study– recruited 298 patients with chronic HBV infection [133 patients with chronic hepatitis B (CHB) and165 patients with hepatocellular cancer (HCC)] and 159 healthy individuals (HC). PD1.1 was genotyped by Sanger sequencing method. We analyzed the association between SNP rs36084323 and HBV infection susceptibility and HCC progression risk. The frequencies of genotype at SNP rs36084323 CC,CT, and TT were: 31.4%, 49.7% 18.9% in the HC group; 35.3%, 51.9%, and 12.8% in the CHB group, and 30.9%, 50.3%, and 18.8% in HCC group. There were no association between rs36084323 and HBV infection susceptibility and HCC development risk in the recessive model (TT vs. CC+CT): HBV infection vs. HC: OR=1.21, 95% CI=0.73-2.00, P>0.05 and HCC vs. CHB: OR=1.58, 95% CI=0.83-3.00, P>0.05. Result suggests that the SNP rs36084323 of the PDCD-1 gene did not associate with hepatitis B infection and HCC predisposition.
Article Details
Keywords
PDCD-1, PD-1, PD-L1, rs36084323, HBV, hepatitis B, HCC
References
2. World Health Organization, World Health Organization, Global Hepatitis Programme. Global Hepatitis Report, 2017.; 2017. Accessed April 23, 2020. http://apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf?ua=1
3. Peng H, Li Q-L, Hou S-H, Hu J, Fan J-H, Guo J-J. Association of genetic polymorphisms in CD8 + T cell inhibitory genes and susceptibility to and progression of chronic HBV infection. Infection, Genetics and Evolution. 2015;36:467-474. doi:10.1016/j.meegid.2015.08.018
4. Chamoto K, Al-Habsi M, Honjo T. Role of PD-1 in Immunity and Diseases. In: Yoshimura A, ed. Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity. Current Topics in Microbiology and Immunology. Springer International Publishing; 2017:75-97. doi:10.1007/82_2017_67
5. Azuma M, Yagita H, eds. Co-Signal Molecules in T Cell Activation: Immune Regulation in Health and Disease. Vol 1189. Springer Singapore; 2019. doi:10.1007/978-981-32-9717-3
6. Bộ Y Tế. Hướng dẫn chẩn đoán, điều trị bệnh viêm gan vi rút B. Published online July 29, 2019:17.
7. Taylor BC, Yuan J-M, Shamliyan TA, Shaukat A, Kane RL, Wilt TJ. Clinical outcomes in adults with chronic hepatitis B in association with patient and viral characteristics: A systematic review of evidence. Hepatology. 2009;49(S5):S85-S95. doi:10.1002/hep.22929
8. Zheng L, Li D, Wang F, et al. Association Between Hepatitis B Viral Burden in Chronic Infection and a Functional Single Nucleotide Polymorphism of the PDCD1 Gene. J Clin Immunol. 2010;30(6):855-860. doi:10.1007/s10875-010-9450-1
9. Nguyen VT-T, McLaws M-L, Dore GJ. Highly endemic hepatitis B infection in rural Vietnam. J Gastroenterol Hepatol. 2007;22(12):2093-2100. doi:10.1111/j.1440-1746.2007.05010.x
10. Le VQ, Nguyen VH, Nguyen VH, et al. Epidemiological Characteristics of Advanced Hepatocellular Carcinoma in the Northern Region of Vietnam. Cancer Control. 2019;26(1):1073274819862793. doi:10.1177/1073274819862793
11. Cote PJ, Korba BE, Miller RH, et al. Effects of age and viral determinants on chronicity as an outcome of experimental woodchuck hepatitis virus infection. Hepatology. 2000;31(1):190-200. doi:10.1002/hep.510310128
12. Nguyen VTT. Hepatitis B Infection in Vietnam: Current Issues and Future Challenges. Asia Pac J Public Health. 2012;24(2):361-373. doi:10.1177/1010539510385220
13. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. doi:10.1146/annurev.immunol.26.021607.090331
14. Okazaki T, Honjo T. The PD-1–PD-L pathway in immunological tolerance. Trends in Immunology. 2006;27(4):195-201. doi:10.1016/j.it.2006.02.001
15. Wagner M, Jasek M, Karabon L. Immune Checkpoint Molecules—Inherited Variations as Markers for Cancer Risk. Front Immunol. 2021;11:606721. doi:10.3389/fimmu.2020.606721
16. SASAKI H, TATEMAYSU T, OKUDA K, MORIYAMA S, YANO M, FUJII Y. PD-1 gene promoter polymorphisms correlate with a poor prognosis in non-small cell lung cancer. Mol Clin Oncol. 2014;2(6):1035-1042. doi:10.3892/mco.2014.358
17. Hashemi M, Karami S, Sarabandi S, et al. Association between PD-1 and PD-L1 Polymorphisms and the Risk of Cancer: A Meta-Analysis of Case-Control Studies. Cancers (Basel). 2019;11(8). doi:10.3390/cancers11081150
18. Da L-S, Zhang Y, Zhang C-J, et al. The PD-1 rs36084323 A > G polymorphism decrease cancer risk in Asian: A meta-analysis. Pathology - Research and Practice. 2018;214(11):1758-1764. doi:10.1016/j.prp.2018.09.015
19. Hua Z, Li D, Xiang G, et al. PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat. 2011;129(1):195-201. doi:10.1007/s10549-011-1440-3
20. Li Y, Zhang H-L, Kang S, Zhou R-M, Wang N. The effect of polymorphisms in PD-1 gene on the risk of epithelial ovarian cancer and patients’ outcomes. Gynecol Oncol. 2017;144(1):140-145. doi:10.1016/j.ygyno.2016.11.010
21. Zhang G, Liu Z, Duan S, et al. Association of polymorphisms of programmed cell death–1 gene with chronic hepatitis B virus infection. Human Immunology. 2010;71(12):1209-1213. doi:10.1016/j.humimm.2010.08.014
22. Hou Z, Zhou Q, Lu M, Tan D, Xu X. A Programmed Cell Death-1 Haplotype is Associated with Clearance of Hepatitis B Virus. Ann Clin Lab Sci. 2017;47(3):334-343.