8. Automatic interpretation for transcranial doppler (tcd) ultrasound

Bui My Hanh, Dinh Thu Huong1
1 Bệnh viện Đại học Y Hà Nội

Main Article Content

Abstract

The objective of this study was to develop an automated process for interpreting the results of transcranial doppler ultrasound. Javascript programming language was used to create functions for interpreting flow velocity in the arteries of the brain. In the trial period, 100 subjects were randomly assigned to undergo ultrasound and have their arterial flow velocity calculated using manual calculation or automated Javacript solution. For the application period, the Javascript solution was applied to ultrasound results of 43,134 subjects. Data is normalized and encoded as numbers and strings. The application interface is a digitized cerebral blood flow velocity measurement result sheet in the form of an HTML file. During the trial period, the reporting speed of the Javascript solution group was significantly faster (23.6 ± 3.1s) than the manual group (605.7 ± 6.2s) (p < 0.001). The overall accuracy of automated responses (100%) was significantly higher than manual responses (75%) (p < 0.05). The duration of automated results interpretation is shortened 25.6 times which saves 6,973 working hours, while also achieves 100% overall accuracy and stores 9.7 million data points in comparison to the manual process. This study has developed a viable automated solution to support the process of interpreting result in quick, reliable and efficient way and also creating a standard data set of cerebral blood flow velocity.

Article Details

References

1. Purkayastha S, Sorond F. Transcranial doppler ultrasound: Technique and application. Seminars in neurology. 2012; 32(4): 411-420.
2. Ringelstein EB. Transcranial doppler sonography. In: Klaus Poeck, Erich Bernd Ringelstein, Werner Hacke, eds. New Trends in Diagnosis and Management of Stroke. Berlin, Heidelberg: Springer Berlin Heidelberg; 1987: 3-28.
3. DeWitt L D, Wechsler L R. Transcranial doppler. Stroke. 1988; 19(7): 915-921.
4. Spencer MP, Whisler D. Transorbital dDoppler diagnosis of intracranial arterial stenosis. Stroke. 1986; 17(5): 916-921.
5. Bùi Mỹ Hạnh, Nguyễn Thị Thùy Trang. Đánh giá kết quả ứng dụng hệ thống trả lời kết quả tự động trong kỹ thuật đo chỉ số tim-mắt cá chân (CAVI) và chỉ số huyết áp cổ chân-cánh tay (ABI). Tạp chí Y học Việt Nam. 2020; 497(số đặc biệt): 19-26.
6. Bùi Mỹ Hạnh. Nghiên cứu xây dựng và triển khai hệ thống hỗ trợ chấn đoán tự động lưu trữ và trả lời kết quả đo chức năng hô hấp cho hệ thống quản lý thông tin y tế. Tạp chí Y học Việt Nam. 2020; 497(số đặc biệt): 26-35.
7. Han SJ, Rutledge WC, Englot DJ, et al. The Presto 1000: A novel automated transcranial Doppler ultrasound system. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia. 2015; 22(11): 1771-1775.
8. Thorpe SG, Thibeault CM, Canac N, et al. Toward automated classification of pathological transcranial Doppler waveform morphology via spectral clustering. PloS one. 2020; 15(2): e0228642.
9. Walsh KE, Razzaghi H, Hartley DM, et al. Testing the use of data drawn from the electronic health record to compare quality. Pediatr Qual Saf. 2021; 6(4): e432.