6. Size of anterior cruciate ligament in adults – a study on 3D magnetic resonance imaging

Vu Tú Nam, Ho Ngoc Minh, Than Tra My, Vo Sy Quyen Nang, Pham Trung Hieu, Dũng Trần Trung1,2, Duong Dinh Toan
1 Vinmec Healthcare System
2 VinUniversity

Main Article Content

Abstract

3D Magnetic Resonance Imaging (MRI) is a valuable evaluation tool used in anterior cruciate ligament (ACL) research as it is a less invasive method and can be easily performed in live patients. In Vietnam, there has been no studies reporting the use of 3D MRI to determine the parameters of the ACL. This study described the 3D MRI results of the healthy knees of 21 patients with indication of ACL reconstruction. The average femoral footprint was 156.6 ± 28.7mm2 with dimensions of 19.2 ± 2.0mm and 11.8 ± 1.6mm; the average tibial footprint was 118.3 ± 24.5mm2 with dimensions of 9.9 ± 1.0 and 15.5 ± 1.7mm. The middle section and ligament body length were 50.8 ± 12.9mm2 and 30.4 ± 2.1mm, respectively. The results from this study offer valuable information to the field of ACL reconstruction surgery.

Article Details

References

1. Cone SG, Howe D, Fisher MB. Size and Shape of the Human Anterior Cruciate Ligament and the Impact of Sex and Skeletal Growth: A Systematic Review. JBJS Rev 2019; 7(6): e8.
2. Han Y, Kurzencwyg D, Hart A, Powell T, Martineau PA. Measuring the anterior cruciate ligament’s footprints by three-dimensional magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc 2012; 20(5): 986-95.
3. Tashiro Y, Lucidi GA, Gale T, et al. Anterior cruciate ligament tibial insertion site is elliptical or triangular shaped in healthy young adults: high-resolution 3-T MRI analysis. Knee Surg Sports Traumatol Arthrosc 2018; 26(2): 485-90.
4. Trần Trung Dũng, Trần Quốc Lâm. A cadaveric study on the anatomy of anterior cruciate ligament in Vietnamese adults. Asia Pac J Sports Med Arthrosc Rehabil Technol 2018; 14: 22-5.
5. Nguyễn Thị Hồng Yến. Một số kích thước của dây chằng chéo trước trên phim chụp cộng hưởng từ. Tạp chí Y học Việt Nam 2021; 505(1).
6. Lee BH, Seo DY, Bansal S, Kim JH, Ahn JH, Wang JH. Comparative Magnetic Resonance Imaging Study of Cross-Sectional Area of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction Grafts and the Contralateral Uninjured Knee. Arthroscopy 2016; 32(2): 321-9.e1.
7. Kulkamthom N, Arkasihayuth A, Charakorn K, Chaimut M, Reeboonlap N. The study of anterior cruciate ligament footprint in Thai population: a human cadaveric study. J Med Assoc Thai 2012; 95 Suppl 10: S167-72.
8. Tampere T, Van Hoof T, Cromheecke M, et al. The anterior cruciate ligament: a study on its bony and soft tissue anatomy using novel 3D CT technology. Knee Surg Sports Traumatol Arthrosc 2017; 25(1): 236-44.
9. Pujol N, Queinnec S, Boisrenoult P, Maqdes A, Beaufils P. Anatomy of the anterior cruciate ligament related to hamstring tendon grafts. A cadaveric study. Knee 2013; 20(6): 511-4.
10. Guenther D, Irarrázaval S, Nishizawa Y, et al. Variation in the shape of the tibial insertion site of the anterior cruciate ligament: classification is required. Knee Surg Sports Traumatol Arthrosc 2017; 25(8): 2428-32.
11. Kusano M, Yonetani Y, Mae T, Nakata K, Yoshikawa H, Shino K. Tibial insertions of the anterior cruciate ligament and the anterior horn of the lateral meniscus: A histological and computed tomographic study. The Knee 2017; 24(4): 782-91.
12. Bowers AL, Bedi A, Lipman JD, et al. Comparison of anterior cruciate ligament tunnel position and graft obliquity with transtibial and anteromedial portal femoral tunnel reaming techniques using high-resolution magnetic resonance imaging. Arthroscopy 2011; 27(11): 1511-22.
13. Utturkar GM, Irribarra LA, Taylor KA, et al. The effects of a valgus collapse knee position on in vivo ACL elongation. Ann Biomed Eng 2013; 41(1): 123-30.