35. Initial applying Qure Artificial Intelligence for chest X-ray in diagnosing pulmonary tuberculosis
Main Article Content
Abstract
Tuberculosis is still a global health concern with yearly increased number of people diagnosed with pulmonary TB. Therefore, the issue of community-based TB screening and early diagnosis of pulmonary TB is an urgent need. Artificial intelligence was applied for the diagnosis of pulmonary tuberculosis to target early detection of lesions and accurate diagnosis. The purpose of our study was to initially apply Qure.AI for chest X-ray in the diagnosis of pulmonary tuberculosis. The study described 126 patients suspected for pulmonary TB; Qure.AI read their chest Xrays and microbiological or histopathological tests were conducted to diagnose pulmonary TB. The final diagnosis were compared with AI. We found a good consensus between the 2 methods. AI sensitivity was 88.8%, specificity was 48.8%, predictive value was negative 71%. The area under the ROC curve was 77.1% with p < 0.001, 95%CI: 0.69 - 0.86. Thus, the chest X-ray images read by Qure.AI were valuable in diagnosing pulmonary tuberculosis with a fairly good level of accuracy with cut-off score of 0.503. Our research showed that AI had the potential to become an essential tool in supporting early diagnosis of pulmonary TB, and community lung TB screening.
Article Details
Keywords
Tuberculosis, artificial intelligence Qure.AI
References
2. Hitze KL. Preliminary report of the WHO seminar on the evaluation of tuberculosis prevention. Bull Int Union Tuberc. 1973;48(0):60-63.
3. Bộ Y tế. Quyết định 3126/QĐ-BYT hướng dẫn chẩn đoán, điều trị, dự phòng lao. Accessed June 23, 2022. https://vnras.com/quyet-dinh-3126-qd-byt/
4. Lê Thị Ba. Nghiên cứu đặc điểm lâm sàng, cận lâm sàng ở bệnh nhân nghi lao phổi tại Trung tâm Hô hấp, Bệnh viện Bạch Mai. Trường Đại học Y Hà Nội. 2017. Accessed September 1, 2023.
5. Trịnh Việt Anh. Đặc điểm lâm sàng, cận lâm sàng và xét nghiệm genxpert trong đờm ở những bệnh nhân nghi lao phổi tại trung tâm hô hấp Bệnh viện Bạch Mai. Luận văn Thạc sĩ. Trường Đại học Y Hà Nội. 2015. Accessed September 1, 2023.
6. Qin ZZ, Sander MS, Rai B, et al. Using artificial intelligence to read chest radiographs for tuberculosis detection: A multi-site evaluation of the diagnostic accuracy of three deep learning systems. Sci Rep. 2019;9(1):15000. doi:10.1038/s41598-019-51503-3
7. Nash M, Kadavigere R, Andrade J, et al. Deep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in India. Sci Rep. 2020;10:210. doi:10.1038/s41598-019-56589-3
8. Lê Hoàn, Lê Tuấn Linh, Đinh Thị Thanh Hồng, và cs. Vai trò của ứng dụng trí tuệ nhân tạo vindr trong dự báo nguy cơ ác tính của nốt phổi đơn độc. Tạp chí Nghiên cứu Y học. 2023;165(4):17-24. doi:10.52852/tcncyh.v165i4.1480