11. Evaluating glioma grading: Assessing the value of quantitative magnetic resonance spectroscopy and diffusion tensor imaging

Nguyen Dinh Hieu, Nguyen Ngoc Anh, Le Thanh Dung, Nguyen Duy Hung

Main Article Content

Abstract

In this study we evaluated the role of magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) in predicting the histological grade of gliomas. The study was conducted on 60 patients with supratentorial glioma who underwent MRI, surgery, and had post-operative pathology results at Viet Duc Hospital from June 2021 to August 2023. The analysis scrutinized the statistical association between the values of Cho/NAA, FA, and MD within both the tumor and peritumoral regions and the histological grade of glioma as determined by post-operative pathology. Notably, the Cho/NAAp ratio and MDp values exhibited statistically significant disparities between lower-grade and higher-grade gliomas. Furthermore, the FAp value demonstrated significant variance between lower-grade and higher-grade gliomas. Combining Cho/NAAp with FAp facilitated enhanced prediction of glioma grade, yielding a sensitivity of 73.7% and a specificity of 95.5%. Additionally, it was observed that Cho/NAA, FA, and MD values within the peritumoral region contributed more effectively to glioma grading compared to those within the tumor region.

Article Details

References

1. McNeill KA. Epidemiology of brain tumors. Neurol Clin. 2016; 34(4): 981-998.
2. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncol. 2021; 23(8): 1231-1251.
3. Fawzy FM, Almassry HN, Ismail AM. Preoperative glioma grading by MR diffusion and MR spectroscopic imaging. Egypt J Radiol Nucl Med. 2016; 47(4): 1539-1548.
4. Kousi E, Tsougos I, Tsolaki E, et al. Spectroscopic evaluation of glioma grading at 3T: the combined role of short and long TE. Sci World J. 2012;2012.
5. Wang Q, Zhang H, Zhang J, et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and meta-analysis. Eur Radiol. 2016; 26: 2670-2684.
6. El-Serougy L, Abdel Razek AAK, Ezzat A, Eldawoody H, El-Morsy A. Assessment of diffusion tensor imaging metrics in differentiating low-grade from high-grade gliomas. Neuroradiol J. 2016; 29(5): 400-407.
7. Nguyễn Thị Vân Anh. Đặc điểm hình ảnh và giá trị của cộng hưởng từ khuếch tán sức căng trong chẩn đoán phân bậc u thần kinh đệm. Luận Văn Thạc Sĩ. Published online 2021.
8. Lê Văn Phước. Vai trò của cộng hưởng từ phổ và cộng hưởng từ khuếch tán trong chấn đoán u sao bào trước phẫu thuật. Luận Văn Tiến Sĩ. Published online 2012.
9. Nguyễn Duy Hùng. Noninvasive evaluation of glioma grade using perfusion and multivoxel 3d proton mr spectroscopy. Điện quang Việt Nam. April 2018.
10. Holland EC. Progenitor cells and glioma formation. Curr Opin Neurol. 2001;14(6): 683-688.
11. Louis DN, Schiff D, Batchelor T, Wen PY. Classification and pathologic diagnosis of gliomas. UpToDate Walth MA Walters Kluwer Health. Published online 2017.
12. Bush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017; 40: 1-14.
13. Zeng Q, Liu H, Zhang K, Li C, Zhou G. Noninvasive evaluation of cerebral glioma grade by using multivoxel 3D proton MR spectroscopy. Magn Reson Imaging. 2011; 29(1): 25-31.
14. Ricci R, Bacci A, Tugnoli V, et al. Metabolic findings on 3T 1H-MR spectroscopy in peritumoral brain edema. Am J Neuroradiol. 2007; 28(7): 1287-1291.
15. Chiang IC, Kuo YT, Lu CY, et al. Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology. 2004; 46: 619-627.
16. Inoue T, Ogasawara K, Beppu T, Ogawa A, Kabasawa H. Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clin Neurol Neurosurg. 2005; 107(3): 174-180.
17. Papageorgiou T, Chourmouzi D, Drevelengas A, Kouskouras K, Siountas A. Diffusion tensor imaging in brain tumors: a study on gliomas and metastases. Phys Med. 2015; 31(7): 767-773.
18. Ma L, Song ZJ. Differentiation between low-grade and high-grade glioma using combined diffusion tensor imaging metrics. Clin Neurol Neurosurg. 2013; 115(12): 2489-2495.
19. Zou QG, Xu HB, Liu F, Guo W, Kong XC, Wu Y. In the assessment of supratentorial glioma grade: the combined role of multivoxel proton MR spectroscopy and diffusion tensor imaging. Clin Radiol. 2011; 66(10): 953-960.