Antibiotic sensitivity and some betalactam resistance genotypes of K. aerogenes isolated at Bach Mai Hospital

Nguyen Thị Viet Ha, Nguyen Thi Van Anh, Nguyen Van Tan, Pham Hong Nhung

Main Article Content

Abstract

The study was conducted on 193 strains isolated from clinical specimens at Bach Mai Hospital from January to December 2023 to determine the sensitivity to antibiotics and identify five carbapenemase-encoding genotypes and six ESBL-encoding genotypes by PCR. The results showed that K. aerogenes was the most isolated from respiratory secretion specimens (79.3%). 150 strains had carbapenem-resistant phenotypes, of which the most common ESBL-encoding genotypes were blaTEM, blaCTX-M1, blaOXA-1 (more than 40%), the most common carbapenemase-encoding genotype was blaOXA-48 (70%). The proportion of strains carrying the combined carbapenemase-encoding genotypes blaNDM + blaOXA-48, blaKPC + blaOXA-48 were 17.3% and 3.3%, respectively. K. aerogenes was resistant to most commonly used antibiotics, only sensitive to some antibiotics such as ceftazidime/avibactam (67.8%), trimethoprim/sulfamethoxazole (41.4%), amikacin (27.9%), gentamicin (18.1%) and the minimum inhibitory concentration of fosfomycin (≤ 16 µg/mL) was 61.1%. The data provide a basis for clinicians to select antibiotics for treatment when there are no antibiogram result.

Article Details

References

1. Baier - Grabner S, Equiluz-Bruck S, Endress D, et al. A Yersiniabactin-producing Klebsiella aerogenes Strain Causing an Outbreak in an Austrian Neonatal Intensive Care Unit. Pediatr Infect Dis J. 2022;41(7):593-599. doi: 10.1 097/I NF.00 0000 0000003553
2. Vargas JM, Moreno Mochi MP, Nuñez JM, et al. Emergence and clonal spread of KPC-2-producing clinical Klebsiella aerogenes isolates in a hospital from northwest Argentina. J Med Microbiol. 2023;72(1). doi: 10.1099/jmm.0.001635
3. Pan F, Xu Q, Zhang H. Emergence of NDM-5 Producing Carbapenem-Resistant Klebsiella aerogenes in a Pediatric Hospital in Shanghai, China. Front Public Health. 2021;9:621527. doi: 10.3389/fpubh.2021.621527
4. Hao M, Shen Z, Ye M, et al. Outbreak Of Klebsiella pneumoniae Carbapenemase-Producing Klebsiella aerogenes Strains In A Tertiary Hospital In China. Infect Drug Resist. 2019;12:3283-3290. doi: 10.2147/IDR.S221279
5. Chou A, Sucgang R, Hamill RJ, et al. Mortality difference from Klebsiella aerogenes vs Enterobacter cloacae bloodstream infections. Access Microbiol. 2023;5(2):acmi000421. doi: 10.1099/acmi.0.000421
6. Peykov S, Stratev A, Kirov B, et al. First detection of a colistin-resistant Klebsiella aerogenes isolate from a critically ill patient with septic shock in Bulgaria. Acta Microbiol Immunol Hung. 2022;69(3):209-214. doi: 10.1556/0 30.2022.01833
7. Wesevich A, Sutton G, Ruffin F, et al. Newly Named Klebsiella aerogenes (formerly Enterobacter aerogenes) Is Associated with Poor Clinical Outcomes Relative to Other Enterobacter Species in Patients with Bloodstream Infection. J Clin Microbiol. 2020; 58(9):e00582-20. doi: 10.1128/JCM.00582-20
8. Kamio K, Espinoza JL. The Predominance of Klebsiella aerogenes among Carbapenem-Resistant Enterobacteriaceae Infections in Japan. Pathogens. 2022;11(7):722. doi: 10.3390/ pathogens11070722
9. Boattini M, Bianco G, Llorente LI, et al. Enterobacterales carrying chromosomal AmpC β-lactamases in Europe (EuESCPM): Epidemiology and antimicrobial resistance burden from a cohort of 27 hospitals, 2020-2022. Int J Antimicrob Agents. 2024;63(5):107115. doi:10.1016/j.ijantimicag.2024.107115https://pubmed.ncbi.nlm.nih.gov/38367844/
10. Phạm Hồng Nhung, Nguyễn Tuấn Linh. Nhiễm trùng do các trực khuẩn Gram âm thường gặp tại Trung tâm Hồi sức tích cực, Bệnh viện Bạch Mai năm 2023. Tạp chí Nghiên cứu Y học. 2024;178(5):43-51. https:// doi.org /10.528 52/tcncyh.v178i5.2401
11. Quế Anh Trâm, Nguyễn Thị Hà. Một số đặc điểm vi khuẩn ở người bệnh viêm phổi liên quan thở máy tại khoa chống độc bệnh viện Hữu Nghị đa khoa Nghệ An. Tạp chí Y học Việt Nam. 2023;530(1). https://doi.org/10.51298/vmj.v530i1.6599
12. Davin-Regli A, Pagès JM. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol. 2015;6:392. doi: 10.3389/fmicb.2015.00392
13. Pranita D Tamma, Emily L Heil, Julie Ann Justo, et al. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America 2024; Version 4.0 https://www.idsociety.org/practice-guideline/amr-guidance/.
14. CLSI. Performance Standards for antimicrobial susceptibility testing. 33th Ed. CLSI suplement M100. Clinical and Laboratory Standards Institute. 2023.
15. Doyle D, Peirano G, Lascols C, et al. Laboratory detection of Enterobacteriaceae that produce carbapenemases. Journal of clinical microbiology. 2012;50(12):3877-3880 doi: 10.1128/JCM.02117-12
16. Dallenne C, Da Costa A, Decré D, et al. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490-495 doi:10.1 093/j ac/dkp498
17. Rasmussen BA, Bush K. Carbapenem-hydrolyzing beta-lactamases. Antimicrobial agents and chemotherapy. 1997;41(2):223. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC163693/
18. Kowalska-Krochmal B, Mączyńska B, Rurańska-Smutnicka D, et al. Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens. 2022;11(12):1441. Published 2022 Nov 30. doi: 10.3390/pathogens11121441
19. Boyd SE, Holmes A, Peck R, et al. OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob Agents Chemother. 2022;66(8):e0021622. doi: 10.1128/aac.00216-22
20. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22(1):161-182. doi:10.1128/ CMR.00036-08
21. Pranita D Tamma, Emily L Heil, Julie Ann Justo, et al. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clinical Infectious Diseases. 2024;ciae403. https://doi.org/10.1093/cid/ciae 403
22. Tze-Peng Lim, Jocelyn Qi-Min Teo, Audrey Wei-Ling Goh, et al. In Vitro Pharmacodynamics of Fosfomycin against Carbapenem-Resistant Enterobacter cloacae and Klebsiella aerogenes. Antimicrob Agents Chemother. 2020;64(9):e00536-20. doi: 10.1128/AAC.00536-20. https://doi. org/ 10. 1128/aac.00536-20
23. Bakthavatchalam Y D, Shankar A, Muthuirulandi Sethuvel D P, et al. Synergistic Activity of fosfomycin–meropenem and fosfomycin–colistin Against Carbapenem Resistant Klebsiella Pneumoniae: an In Vitro Evidence. Future Science OA. 2020;6(4):1. https://doi.org/10.2144/fsoa-2019-0074
24. Takei K, Ogawa M, Sakata R, et al. Molecular Epidemiology of Carbapenem-Resistant Klebsiella aerogenes in Japan. Int J Mol Sci. 2024;25(8):4494. Published 2024 Apr 19. doi: 10.3390/ijms25084494
25. Merhi G, Amayri S, Bitar I, et al. Whole Genome-Based Characterization of Multidrug Resistant Enterobacter and Klebsiella aerogenes Isolates from Lebanon. Microbiol Spectr. 2023;11(1):e0291722. doi: 10.1128/spectrum.02917-22
26. Nguyễn Quang Toàn, Nguyễn Thị Kim Phương, Bùi Tiến Sỹ, và cs. Đánh giá hiệu quả một số biện pháp can thiệp nhằm làm giảm nhiễm khuẩn bệnh viện tại các đơn vị Hồi sức tích cực, Bệnh viện Trung ương Quân đội 108. Journal of 108 - Clinical Medicine and Phamarcy. 2024. https://doi.org/10.52389/ydls.v0i0.2296
27. H′Nương Nie, Phạm Hồng Nhung, Trần Minh Châu, et al. Xác định kiểu gen mã hóa carbapenemase của các chủng Klebsiella pneumoniae sinh carbapenemase chưa phân nhóm được bằng hệ thống Phoenix M50. Tạp chí Nghiên cứu Y học. 2023;160(12V1):1-7. https://doi.org/10.52 852/tcncy h.v160i12V1.1137