1. Identification of genetic variants associated with phenotype in children with functional single ventricle

Le Trong Tu, Nguyen Thi Kim Lien, Nguyen Van Tung, Vu Quynh Nga, Dang Thi Hai Van, Nguyen Minh Duc, Nguyen Huy Hoang

Main Article Content

Abstract

Functional single ventricle heart disease is a complex form of CHD that includes multiple defects with a relatively high degree of heritability and risk of recurrence in siblings. The multifactorial etiology of congenital heart disease poses a challenge in clearly identifying specific causative factors and planning effective treatment interventions. WES sequencing is increasingly being applied in research to identify gene variants associated with genetic diseases, especially those with complex genetic mechanisms such as functional single ventricle heart disease. In this study, we used WES sequencing to identify genetic variations in relevant genes in 23 patients with FSV. A total 55 variants in 28 genes related to CHD (including 16 genes related to severe malformations including BMP4, COL11A1, ELN, EOGT, HSPG2, KMT2D, LRP2, MYBPC3, MYH6, MYH7, NFATC1, NIPBL, NOTCH1, SEMA3C, TBX2, USH2A) were identified and evaluated by software to predict the impact of the variants,  and contribute useful information to the general understanding of the causes of the disease and provide a scientific basis for clinicians in the diagnosis, treatment and genetic counseling of patients and their families.

Article Details

References

1. Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ. Res. 2017; 120: 923–940. doi:10.1161/CIRCRESAHA.116.309140.
2. Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018; 137:e67–e92. doi:10.1161/CIR.000000000000055.
3. Homsy J, Zaidi S, Shen Y, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015; 350: 1262–1266. doi:10.1126/science.aac9396.
4. Glessner JT, Bick AG, Ito K, et al., Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ. Res. 2014; 115: 884–896. doi:10.1161/CIRCRESAHA.115.304458.
5. Kim DS, Kim JH, Burt AA, et al. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival. J. Thorac. Cardiovasc. Surg. 2016; 151: 1147–1151. doi:10.1016/j.jtcvs.2015.09.136.
6. Qian B, Mo R, Da M, et al. Common variations in BMP4 confer genetic susceptibility to sporadic congenital heart disease in a Han Chinese population. Pediatr. Cardiol. 2014; 35: 1442–1447. doi:10.1007/s00246-014-0951-1.
7. Sticchi E, De Cario R, Magi A., et al. Bicuspid aortic valve: Role of multiple gene variants in influencing the clinical phenotype. Bio. Med. Res. Int. 2018; 8386123. doi:10.1155/2018/8386123.
8. Spielmann M, Miller G, Oprea TI, et al. Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy. Nat. Cardiovasc. Res. 2022; 1: 157–173. doi:10.1038/s44161-022-00018-8.
9. Tang CSM, Mononen M, Lam WY, et al. Sequencing of a Chinese tetralogy of Fallot cohort reveals clustering mutations in myogenic heart progenitors. JCI Insight. 2022; 7(2): e152198. doi:10.1172/jci.insight.152198.
10. Yasuhara J, Garg V. Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Transl. Pediatr. 2021; 10(9): 2366–2386. doi:10.21037/tp-21-297.
11. Pierpont ME, Brueckner M, Chung WK, et al. American Heart Association Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; Council on Genomic and Precision Medicine. Genetic basis for congenital heart disease: revisited: a scientific statement from the American Heart Association. Circulation. 2018; 138: e653–e711. [Erratum in Circulation 138: e73, 2018]. doi:10.1161/CIR.0000000000000608.
12. Xu J, Wu Q, Wang L, et al. Next-generation sequencing identified genetic variations in families with fetal non-syndromic atrioventricular septal defects. Int. J. Clin. Exp. Pathol. 2018; 11(7): 3732–3743. PMID:31949757.
13. Zhao X, Hou C, Xiao T, et al. An interesting Mybpc3 heterozygous mutation associated with bicuspid aortic valve. Transl. Pediatr. 2020; 9(5): 610–618. doi:10.21037/tp-20-81.
14. Wu Y, Jin X, Zhang Y, et al. Genetic and epigenetic mechanisms in the development of congenital heart diseases. World Jnl. Ped. Surgery. 2021;4:e000196. doi:10.1136/wjps-2020-000196.
15. Li B, Li T, Pu T, et al. Genetic and functional analyses detect one pathological NFATC1 mutation in a Chinese tricuspid atresia family. Mol. Genet. Genomic. Med. 2021; 9:e1771. doi:10.1002/mgg3.1771.
16. Zhang Z, Xu K, Ji L, et al. A novel loss-of-function mutation in NRAP is associated with left ventricular non-compaction cardiomyopathy. Front. Cardiovasc. Med. 2023; 10:1097957. doi:10.3389/fcvm.2023.1097957.
17. Duran I, Tenney J, Warren CM, et al. NRP1 haploinsufficiency predisposes to the development of Tetralogy of Fallot. Am. J. Med. Genet. A. 2018; 176(3): 649–656. doi:10.1002/ajmg.a.38600.
18. Rakhmanov Y, Maltese PE, Zulian A, et al. Genetic testing for atrial septal defect. EuroBiotech J. 2018; 2(1): 45–47. doi:10.2478/ebtj-2018-0035.
19. Chen S, Jin Q, Hou S, et al. Identification of recurrent variants implicated in disease in bicuspid aortic valve patients through whole-exome sequencing. Human Genomics. 2022; 16:36. doi:10.1186/s40246-022-00405-z.
20. Nielsen AKM, Nyboe C, Ovesen ASL, et al. Mutation burden in patients with small unrepaired atrial septal defects. IJC Congenital Heart Disease. 2021; 4: 100164. doi:10.1016/j.ijcchd.2021.100164.
21. Loffredo CA, Chokkalingam A, Sill AM, et al. Prevalence of congenital cardiovascular malfor-mations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am. J. Med. Genet. A. 2004; 124A: 225–230. doi:10.1002/ajmg.a.20366.