10. Ảnh hưởng Chlormequat Chloride lên khả năng sinh sản, chỉ số sinh trưởng của ruồi giấm

Nguyễn Trọng Tuệ, Nguyễn Thị Thu Nga

Nội dung chính của bài viết

Tóm tắt

Chlormequat Chloride (CCC) is a plant growth regulator widely used to enhance crop yield and value. However, excessive use of CCC may have adverse effects on human health. In this study, we utilized the fruit fly (Drosophila melanogaster) model to evaluate the effects of CCC on reproductive ability and certain growth indices. The results showed that CCC reduced reproductive capacity and prolonged developmental time but did not affect survival rate or puparium height. Additionally, this study demonstrated that CCC induces neurodegeneration in fruit fly brain cells through a DNA breakage mechanism. Thus, the fruit fly model can be used for toxicological screening,  for elucidating the interactions between toxic substances and biological systems while providing a foundation for further research on higher animal models.

Chi tiết bài viết

Tài liệu tham khảo

1. Tolbert NE. (2-Chloroethyl) Trimethylammonium Chloride and Related Compounds as Plant Growth Substances. II. Effect on Growth of Wheat. Plant Physiol. 1960; 35(3): 380-385. doi:10.1104/pp.35.3.380.
2. Zhang H, Sun X, Dai M. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Commun. 2021; 3(1): 100228. doi:10.1016/j.xplc.2021.100228.
3. Sørensen MT, Danielsen V. Effects of the plant growth regulator, chlormequat, on mammalian fertility. Int J Androl. 2006; 29(1): 129-133. doi:10.1111/j.1365-2605.2005.00629.x.
4. Huang D, Wu S, Pan Y, et al. The effects of chlormequat chloride on the development of pubertal male rats. Environmental Toxicology and Pharmacology. 2016; 47: 92-99. doi:10.1016/j.etap.2016.09.002.
5. Jennings BH. Drosophila – a versatile model in biology & medicine. Materials Today. 2011; 14(5): 190-195. doi:10.1016/S1369-7021(11)70113-4.
6. Frankel S, Ziafazeli T, Rogina B. dSir2 and longevity in Drosophila. Exp Gerontol. 2011; 46(5): 391-396. doi:10.1016/j.exger.2010.08.007.
7. Roy A, Mandi M, Roy S. Rotenone Induced Alterations in Lifecycle Parameters and Compound Eye Morphology of Drosophila Melanogaster. Toxicology International. 2017; 24: 46-63. doi:10.22506/ti/2017/v24/i1/149034.
8. Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature. 2009; 461(7263): 537-541. doi:10.1038/nature08313.
9. Ong C, Lee QY, Cai Y, et al. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci Rep. 2016; 6:20632. doi:10.1038/srep20632.
10. Yamanaka N, Rewitz KF, O’Connor MB. Ecdysone control of developmental transitions: lessons from Drosophila research. Annu Rev Entomol. 2013; 58: 497-516. doi:10.1146/annurev-ento-120811-153608.
11. Tiwari AK, Pragya P, Ravi Ram K, Chowdhuri DK. Environmental chemical mediated male reproductive toxicity: Drosophila melanogaster as an alternate animal model. Theriogenology. 2011; 76(2): 197-216. doi:10.1016/j.theriogenology.2010.12.027.
12. Abolaji A, Kamdem DrJP, Farombi O, Rocha JB. Drosophila melanogaster as a Promising Model Organism in Toxicological Studies: A Mini Review. Archives of Basic and Applied Medicine. 2013; 1:33-38.
13. Ishimoto H, Sakai T, Kitamoto T. Ecdysone signaling regulates the formation of long-term courtship memory in adult Drosophila melanogaster. PNAS. 2009; 106(15): 6381-6386. doi:10.1073/pnas.0810213106.
14. Ameku T, Yoshinari Y, Fukuda R, Niwa R. Ovarian ecdysteroid biosynthesis and female germline stem cells. Fly (Austin). 2017; 11(3): 185-193. doi:10.1080/19336934.2017.1291472.
15. Torner H, Blottner S, Kuhla S, Langhammer M, Alm H, Tuchscherer A. Influence of chlorocholinechloride-treated wheat on selected in vitro fertility parameters in male mice. Reproductive Toxicology. 1999; 13(5): 399-404. doi:10.1016/S0890-6238(99)00032-5.