35. The value of multiplex real-time pcr in the identification of pathogens in lower respiratory tract infections

Tran Thi Ngan, Le Hoan, Le Minh Hang, Dinh Thi Thanh Hong, Nguyen Thi Nhu Quynh, Tran Minh Chau

Main Article Content

Abstract

The identification of pathogens in lower respiratory tract infections could guide treatment and avoid the overuse of antibiotics. Multiplex real-time PCR using the Allplex respiratory assays kit is able to detect 26 common microbial agents, increasing the ability to identify the pathogens. A cross-sectional study with 56 patients diagnosed with lower respiratory tract infections was performed with bacterial culture and multiplex real-time PCR. The rate of agent detection of bacterial culture was 12.5%, and for multiplex real-time PCR was 44.6%, including 28.6% of cases were pure bacterial, 8.9% pure viral infections, 3.6% viral-bacterial co-infections, and 3.6% atypical bacteria.

Article Details

References

1. WHO. The top 10 causes of death. WHO. Published 2020. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
2. Rider AC, Frazee BW. Community-Acquired Pneumonia. Emerg Med Clin North Am. 2018; 36(4): 665-683. doi:10.1016/j.emc.2018.07.001.
3. Evans SE, Jennerich AL, Azar MM, et al. Nucleic Acid-based Testing for Noninfluenza Viral Pathogens in Adults with Suspected  Community-acquired Pneumonia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2021; 203(9): 1070-1087. doi:10.1164/rccm.202102-0498ST.
4. Wertheim HFL, Nadjm B, Thomas S, et al. Viral and atypical bacterial aetiologies of infection in hospitalised patients  admitted with clinical suspicion of influenza in Thailand, Vietnam and Indonesia. Influenza Other Respir Viruses. 2015; 9(6): 315-322. doi:10.1111/irv.12326.
5. Seegene. Allplex Respiratory Panel Assays.; 2016.
6. Aydemir Ö, Aydemir Y, Özdemir M. The role of multiplex PCR test in identification of bacterial pathogens in lower respiratory tract infections. Pakistan Journal of Medical Sciences. 1969; 30(5). doi:10.12669/pjms.305.5098.
7. Ottosen J, Evans H. Pneumonia: challenges in the definition, diagnosis, and management of disease. Surg Clin North Am. 2014; 94(6): 1305-1317. doi:10.1016/j.suc.2014.09.001.
8. Gadsby NJ, Russell CD, McHugh MP, et al. Comprehensive Molecular Testing for Respiratory Pathogens in Community-Acquired  Pneumonia. Clinical infectious diseases : an official publication of the Infectious Diseases  Society of America. 2016;62(7):817-823. doi:10.1093/cid/civ1214.
9. Abdeldaim GM, Strålin K, Korsgaard J, Blomberg J, Welinder-Olsson C, Herrmann B. Multiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. BMC Microbiology. 2010; 10(1): 310. doi:10.1186/1471-2180-10-310.
10. Leber AL. Respiratory Tract Cultures. In: Clinical Microbiology Procedures Handbook. ASM Press; 2016:3.11.1.1-3.11.9.4. doi:10.1128/9781555818814.ch3.11.1.
11. Takahashi K, Suzuki M, Minh LN, et al. The incidence and aetiology of hospitalised community-acquired pneumonia among  Vietnamese adults: a prospective surveillance in Central Vietnam. BMC Infect Dis. 2013; 13: 296. doi: 10.1186/1471-2334-13-296.
12. Holter JC, Müller F, Bjørang O, et al. Etiology of community-acquired pneumonia and diagnostic yields of microbiological  methods: a 3-year prospective study in Norway. BMC Infect Dis. 2015; 15: 64. doi:10.1186/s12879-015-0803-5